
The need for mole fraction derivatives 
Ross Taylor, Harry Kooijman, ChemSep 
Jasper van Baten, AmsterCHEM 
Richard Baur, Shell Global Solutions 
September 2006 
 
This document will demonstrate: 
 

 The need for unconstrained mole fraction derivatives in MS diffusion problems 
 The relation between constrained mole fraction derivatives, unconstrained mole 

fraction derivatives and mole number derivatives 
 The fact that unconstrained mole fraction derivatives (the derivatives of a property 

with respect to xi, in which xj≠i are kept constant, i.e. all x are treated as independent 
variables) allow reconstruction of constrained mole fraction derivatives as well as 
mole number derivatives 

 The fact that mole number derivatives do not allow reconstruction of any mole 
fraction derivatives. 

 
We therefore reason that: 
 

 Since unconstrained mole fraction derivatives allow for reconstruction of all other 
flavours of composition derivatives, these are the most versatile values 

 Since most thermodynamic and physical property calculation routines are set up in 
terms of mole fractions, unconstrained mole fraction derivatives are straightforward to 
obtain in most cases 

 Perturbation in the principle directions of the above mentioned equations, i.e. in the 
directions of independent x, allow for easy verification of the values obtained for the 
derivatives, provided that the calculation routine does not choose to conclude that it 
cannot calculate a property if the sum of x is not unity 

 In systems of equations where x are treated as independent variables, the proper 
derivatives of the equations towards x require the unconstrained mole fraction 
derivatives, without having to take into considerations constraints like having to be on 
the hyperplane of sum of x being unity (again provided that any calculation routine 
required for evaluation the equation does not choose to conclude that it cannot 
calculate its result when sum of x is not unity) 

 
It is also important to notice that there is a desire for unconstrained mole fraction derivatives 
because these have traditionally been used in a number of simulation applications (for their 
availability and applicability). So not only would having support for these values in the 
thermodynamic CAPE OPEN version 1.1 standard allow these applications to readily 
exchange their values, it would also allow backward compatibility with the CAPE OPEN 
version 1.0 standard. 
 
We therefore opt to adopt a definition of .DmolFraction as the unconstrained mole fraction 
derivative of properties using the following definition: 
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MS DIFFUSION IN NONIDEAL FLUIDS – THE REQUIREMENT FOR MOLE 
FRACTION DERIVATIVES 
 
The force acting on species i  per unit volume of mixture tending to move the molecules of 
species i  is t ic RTd where id is related to the relative velocities, ( i ju u ), by     
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where ijD is the Maxwell-Stefan diffusivity whose physical significance as an inverse drag 

coefficient is the same as in the ideal gas case. For non-ideal fluids id , which can be 

considered to be a driving force, is defined by 
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 The appearance of chemical potential gradients in these equations should not come as a 
surprise.  Equilibrium is defined by equality of chemical potentials and departures from 
equilibrium are characterized by the presence of chemical potential gradients.  Chemical 
potential gradients arise in the thermodynamics of irreversible processes as the fundamentally 
correct driving forces for diffusion.  The subscripts ,T P are to emphasize that the gradient in 
the equation is to be calculated under constant temperature, constant pressure conditions 
(pressure gradients and external forces also contribute to id , but we shall ignore their 

influence).  The driving force, id , reduces to  1/ iP p  for ideal gases, as it should.  Also, the 

sum of the n driving forces vanishes 
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due to the Gibbs-Duhem restriction; this means that only 1n   driving forces are 
independent.   
 
 
Chemical potential gradients are not the easiest of quantities to deal with. For non-ideal 
liquids we may express the driving force id  in terms of the mole fraction gradients as 

follows:    
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 where i is the activity coefficient of species i  in the mixture and where 
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The symbol   is used to indicate that the differentiation of iln with respect to mole fraction 

jx  is to be carried out while keeping constant the mole fractions of all other species except 

the n-th. The mole fraction of species n  must be eliminated using the fact that the ix sum to 

unity. More specifically: 
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This matches the definition of constrained mole fraction derivatives (equation 16) 
  
For dense gas mixtures exhibiting deviations from ideal gas behavior the above formulation 
can be used with the activity coefficient, i , replaced by the fugacity coefficient, i :   
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An equation of state needs to be used for calculation of the molar density, tc  and the 

derivatives of the fugacity coefficients (see, for example, Walas, S. Phase Equilibria 
in Chemical Engineering, Butterworth, 1985) 

Mole number and unconstrained mole fraction differentials 

If we treat all mole fractions as independent variables, we obtain for the differentials 
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This follows also immediately from the definition 

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n
x  by differentiation. 

We also can write the differentials in matrix notation. 
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It can be shown that the determinant of Jacobean is given by 
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Definition of unconstrained mole fraction derivatives 
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We assume that all mole fractions are independent. Hence, we keep N-1 mole fractions 
constant when differentiating. These derivatives are a mathematical construction and do not 
have a physical meaning. Moreover, the derivatives depend on the implementation of M in a 
property package, and so might not be unique for all property packages. 
 

Definition of constrained mole fraction derivatives 
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One of the mole fractions is substituted by the summation equation. Therefore, N-2 mole 
fractions are kept constant when differentiating. 
 
Relation between constrained and unconstrained derivatives 
 
The total differentials for constrained and unconstrained derivatives are given by: 
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For constrained derivatives we know that N-2 mole fractions are kept constant ( 0ldx  for 

ikl , ). The differentials for the varying components are related by ik dxdx  . Hence, 

comparing equation (3) and (4) yields 
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Relation between mole number derivatives and mole fraction derivatives 
 
The mole number derivatives are defined by  
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Using equation (1) yields 
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or  
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In terms of constrained derivatives we obtain 
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Equation (6) can also be written in matrix form 
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Following the consideration in the first paragraph it should be clear that the Jacobean is 
singular on the hyperspace. Hence, it is not possible to express mole fraction derivatives with 
mole number derivatives.  
 
Relation between partial molar derivatives and mole fraction derivatives 
 
The partial derivatives are defined by 
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Making use of equation (7) yields 
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In matrix notation (using unconstrained derivatives) we obtain 
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where I is a unity vector. Again, it is not possible to express mole fraction derivatives with 
mole number derivatives since the Jacobean is singular. 


