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Summary 
Applications that perform chemical process or equipment calculations may distribute 

calculations over multiple nodes to benefit from modern computer hardware. In the context of 
desktop simulation applications, this presentation focuses on multi-threaded access to third 
party thermodynamics servers via CAPE-OPEN interfaces. Threading models are discussed 
as well as other implementation specifics that affect computational performance; multi-
threaded thermodynamic access has been successfully implemented in the COFE simulation 
environment. This implementation, and other emerging applications, highlights the difficulties 
that may arise from issues with the thermodynamic server implementations that are currently 
available. It is expected that multi-threaded computation using thermodynamic servers will gain 
momentum and such issues will be addressed by the thermodynamic software vendors.  

Introduction 
 Thermodynamic property and phase equilibrium calculations are at the root of many – if 
not most – chemical engineering process and equipment calculations. Examples include 
steady state and dynamic process flowsheet calculations, used for process design, analysis of 
existing processes, process control and operator training, or simulations of chemical 
equipment such as reactors and separators for design and retrofit purposes. Often, such 
models are based on first principles, where mass and energy balances must be closed and 
transport properties such as thermal conductivities and viscosities are required to provide 
details on mass and heat transport. For process simulations, typically more than 90% of the 
computational time is spent in thermodynamic calculations. 

Some simple steady state flowsheet calculations or equipment models can converge 
within seconds of CPU time, but as soon as such process calculations have to be solved in the 
context of goal seeking or optimization CPU time drastically increases. Other types of 
calculations, such as dynamic flowsheet calculations, oil well reservoir calculations or 
Computational Fluid Dynamics (CFD) type simulations using transport properties that are 
based on thermodynamic sub-calculations typically require several orders of magnitude longer 
computation times, and development of efficient strategies of such calculations are warranted. 

Trends in computing equipment 
Moore’s law[1]

 indicates that the number of transistors that are placed on common 
computational equipment approximately doubles every two years. As a result of that, 
computational speed of computers increases exponentially with time. This is illustrated in 
Figure 1. If we have a closer inspection of this figure, we note that in recent years, computers 
include multiple cores per node. This trend implies that we cannot benefit from the exponential 
increase in computational performance by sticking to the classic approach of a single-threaded 
calculation; such a calculation will only occupy a single core on a single node. Hence, to allow 
for computations that benefit from modern-day computing equipment, we need to somehow 
distribute our calculations over different nodes. Depending on the increase of computational 
speed on a single node or core was the main source of making computations faster up to 



roughly the end of 2004[2]. Computers with nodes that contain up to 16 cores are not 
exceptional today. 

 
Figure 1: CPU transistor Count 1971-2008 & Moore’s Law. Transistor counts for integrated circuits plotted against their dates 

of introduction. The curve shows Moore's law - the doubling of transistor counts every two years. Image from Wikipedia 
Commons, Nov 2008, by author Wgsimon. 

  

Distributed vs. multi-threaded calculations 
The above implies that we need to distribute our calculations over multiple nodes, or 

over multiple cores at the same node. Using multiple cores (within the same computer or 
distributed over multiple computers), we can distribute the process calculations over multiple 
processes. Using this approach, the calculations can be performed in a highly scalable 
manner[3]. Generally the communication between nodes is done via TCP/IP, either over the 
internal loopback network device, or over a LAN or even WAN. More advanced communication 
hierarchies are available these days, such as InfiniBand[4]. 

In the limit of a few nodes and independent calculations, the calculation time is split in 
two with each doubling of the amount of nodes used. In the limit of many nodes and dependent 
calculations, the data traffic between the nodes is the limiting factor, and increasing the 
amount of nodes eventually actually increases the calculation time. Hence, there is an optimal 



number of nodes for each process. Often the amount of nodes actually used is dictated by the 
nodes available to the user rather than by this optimum.  

The typical process engineer performs calculations using a desktop application at his 
own assigned computer. Typically, such a computer is a desktop computer equipped with a 
single node with multiple cores. In such cases, the number of nodes and cores is dictated by 
the equipment at hand, and to make optimal use of it, multi-threading applications are 
interesting. Using technologies like HyperThreading[5], the threads are automatically distributed 
over the available cores; if we have an appropriate number of threads that perform the 
calculations, the full computer capacity can be employed. As opposed to distributed 
calculations, multi-threaded calculations are performed by a single process. Hence, the 
calculations are all performed in the same process space, having access to the same process 
memory. The communication between the threads can therefore be very efficient. This 
presentation focuses on multi-threading rather than distributed calculations.  

Dividing the load 
 Dividing the load of the computation at hand over the available threads can be a 
challenging task, and is highly dependent on the type of computation that needs to be 
performed. Generally, a good division of the load is one that most equally distributes the 
calculation time required, while minimizing the dependence and therefore the communication 
and synchronization between the threads. 
 The nature of the computation at hand often provides a good clue on how to distribute 
the load over different threads. For grid-based calculations, such as CFD for example, the 
division is commonly made by splitting the computational domain over the threads; the size of 
the boundaries between all of the sub-domains represent the required communication between 
the threads; the computational load of each thread is proportional to the size of each sub-
domain. For calculations that are iterative and with some level of independence of the 
iterations (e.g. perturbation of a system to obtain its sensitivities, or repeated simulations with 
different inputs such as the parametric studies performed in the COFE simulator[6]), the 
independent iterations can be divided over different threads. No general recipes are available 
for distributing computational load over multiple threads. 
 As the division is performed with the aim of independence of calculations, equal loads 
and minimal communication, it is likely that each thread will have to perform its own 
thermodynamic calculations.  

Thermodynamics and CAPE-OPEN 
 Traditionally, simulation applications come with built-in thermodynamic subroutines that 
perform the thermodynamic property and phase equilibrium calculations. Chemical companies 
that have experience with particular processes that they are working with may have their own 
in-house thermodynamics. Thermodynamic companies may specialize in particular 
thermodynamics that they provide commercially, and may be used by chemical companies in 
the process simulations. Also, chemical companies may want to perform their process 
simulations using the simulation software from a particular vendor, but require thermodynamics 
from a different vendor. Nearly all simulation applications therefore provide a means to 
incorporate third party thermodynamic routines. 
 A common way of introducing third party thermodynamic routines into simulation 
applications is by means of custom interfaces; the simulation user frequently has to provide a 
FORTRAN interface routine that takes care of performing the calculations or dispatching the 
calculations to the third party thermodynamic software that is used. Such interface routines are 



specific to both the simulation environment and the thermodynamic software used. For a 
different simulation application, or when using different thermodynamics, new interface 
routines have to be written. With software upgrades, the interface routines may require 
maintenance. 
 CAPE-OPEN[7, 8] provides a means of avoiding these custom interfaces. CAPE-OPEN is 
a collection of interface standard definitions that facilitates exchange of thermodynamic and 
physical property models and unit operations (Process Modeling Clients, PMCs) between 
available simulation applications (Process Modeling Environments, or PMEs). 
 Currently, most main-stream steady-state simulation environments support importing 
third party thermodynamic servers via CAPE-OPEN. CAPE-OPEN thermodynamic interfaces 
have been well established, validated and demonstrated[7-17]. Examples of simulation 
environments supporting external CAPE-OPEN thermodynamics servers include Aspen Plus 
(http://www.aspentech.com/)[18], Aspen HYSYS (http://www.aspentech.com/)[18], BASF 
ProcessNet[19], ChemStations ChemCAD (http://www.chemstations.com/), COCO 
(http://www.cocosimulator.org/)[6], COMSOL Multiphysics (http://www.comsol.com/)[20], 
Honeywell Unisim Design (http://www.honeywell.com/ps/unisimdesign), ProSim ProSimPlus 
(http://www.prosim.net/)[21], PSE gPROMS (http://www.psenterprise.com/gproms/)[22], SimSci 
Pro/II (http://iom.invensys.com/) and SolidSim (http://www.solidsim.com/)[23].  
 In order to reduce overhead of software creation and maintenance by elimination of 
custom interfacing, it makes sense to implement a CAPE-OPEN interface for thermodynamic 
servers as well as for simulation applications that consume thermodynamics. 

CAPE-OPEN architecture and threading models 
The CAPE-OPEN interfaces are defined as a common object model structure, and there 

are two implementations available; COM and CORBA. COM[24] (Common Object Model) is 
integrated with Microsoft Windows. CORBA[25] (Common Object Request Broker Architecture) 
is in principle platform independent, but requires additional software to be installed to establish 
the connection (Object Request Broker (ORB) software). Of these two implementations, COM 
is currently the widely used one, and only very few CORBA CAPE-OPEN implementations are 
available. Thus, a COM implementation is the focus of this presentation. 
 The CAPE-OPEN thermodynamic standards at this point in time have two 
versions[26, 27]; Version 1.0 and Version 1.1; the former is still more widely supported, but 
Version 1.1 has a better design and solves a number of issues that were not well dealt with by 
the Version 1.0 specification. These interface specifications not only allow for simulation 
applications to interface with external thermodynamic servers, but also cater for the 
thermodynamic interactions between CAPE-OPEN based unit operation models embedded in 
CAPE-OPEN aware process simulators. 
 Nearly all CAPE-OPEN thermodynamic servers are available as in-process (DLL) COM 
objects. COM threading models are well defined, and the discussion of threading models 
would apply to other middle-ware as well. COM threading models come in several flavours, 
two of which are interesting in this context: 

 Apartment threaded: each COM object created can only be accessed from the thread it 
was created from. Therefore, for each COM object it is guaranteed that it is not 
accessed from multiple threads simultaneously. Multiple single-threaded apartments 
can however exist. 

 Free threaded: each COM object created can be accessed from any thread. Each 
object can therefore be accessed simultaneously by multiple threads. 

 



The COM client (the simulation application consuming the thermodynamics) and the COM 
server (the thermodynamic server providing the property and phase equilibrium calculations) 
can each choose their threading model. The COM mechanisms implemented by Windows 
takes care that the communication between the server and the client is done in such as way 
that the threading requirements for both server and client are satisfied. Table 1 illustrates this: 

 
Table 1: requirements for synchronization of COM calls between client and server. Yes in this table indicates that Windows 
synchronization mechanisms will be automatically invoked. 

 Client Apartment threaded Client Free Threaded 
Server Apartment Threaded No Yes 
Server Free Threaded No No 

 
For a multi-threaded application, it would be intuitive to initialize the COM communication 

as Free Threaded. However, unless the server is implemented as Free Threaded, we see from 
Table 1 that synchronization is required. Synchronization implies that Windows will make sure 
all the calls to a COM object are performed by the thread that created the object (as expected 
by the Apartment Threaded model). For applications in which the thermodynamics consume a 
considerable amount of the total CPU time, the performance of a multi-threaded application is 
in this scenario drastically reduced, as each thread has to wait for other threads to complete 
the thermodynamic calculations. This is even worse in the case where the thread that created 
the COM server object is one of the calculation threads; this thread will now bear nearly the 
entire computational load. 

Unless we can guarantee that the thermodynamic server is Free Threaded, the 
thermodynamic property and phase equilibrium calculations are no longer direct calls into the 
thermodynamic server. The software that is in between the client and the server to synchronize 
the calls is called a marshaller. Marshalling thermodynamic calls is in general detrimental to 
the performance of the calculations and should be avoided. Nearly all CAPE-OPEN COM 
thermodynamic servers that are currently available are implemented as Apartment Threaded. 
The inescapable conclusion is that the client should access the server according to the 
Apartment Threaded model. 

As the Apartment Threaded model requires that we can only access the COM object from 
the thread it was created in, this implies that each calculation thread should create its own 
copy of the COM server. This makes sense also from the point of view of implementation of 
the server; the server has indicated by implementing the Apartment Threaded model that its 
objects are not thread-safe and should only be accessed by one object at a time. This implies 
that the COM server uses resources (local data, global data, …) that are not suitable for 
multiple accessing at the same time. For illustration, a property evaluation may depend on 
temperature, pressure and composition. While evaluating the property, the server will obtain 
temperature, pressure and composition from the client and store them during the evaluation. If 
a second evaluation would be started while the first evaluation has not yet finished, the values 
for temperature, pressure and composition will be overwritten by the second calculation, and 
the first calculation completes with incorrect data. 

To conclude: the Apartment Threaded model is implemented by most servers. Unless the 
client can insure that the server is actually Free Threaded, it should use the Apartment 
Threaded model as well. Each calculation thread should then create its own COM object. 



Thread safe or not? 
A common assumption in thermodynamic software implementations is that the software 

is only accessed from a single thread. Even in the case of the Apartment Threaded model, 
multiple threads may exist that each create their own COM object. This is the scenario as 
outlined above as desirable to speed up process calculations. However, if the COM server is 
using global data then this will be shared by all threads and concurrent access of separate 
COM servers from different threads may cause invalid results or software crashes. By 
advertising the Apartment Threaded model, such a COM object does not do what it promises, 
and the thermodynamic software vendor should fix such problems. 

Data marshalling 
We have seen that threading models can give rise to marshalling, and marshalling should 

be avoided due to its adverse effect on thermodynamic calculation performance. Other factors 
can result marshalling: if the data that is accessed by the client does not occupy the same 
memory as the data accessed by the server, data marshalling is required. The COM 
machinery in Windows will also automatically take care of this, but it should be avoided for 
performance reasons. The data marshalling required for a simple property evaluation (such as 
density for the vapor phase at given temperature, pressure and composition) can take as long 
as the calculation itself. 

To avoid data marshalling, the COM server should be loaded into the same process space 
as the client, thereby being able to access the same memory directly. The COM server is 
therefore best written as an in-process server (DLL). Out-of-process servers (EXE or service) 
are marshaled via the Windows RPC mechanism. 

Another reason for data marshalling is that the data formats required by the server and the 
client are different. A common example of this is software components written in the .NET 
framework and running in the Common Language Runtime (CLR); such software components 
have built-in support for COM, but at the cost of data-marshalling (unless both the client and 
the server are written in .NET). As nearly all process simulators are using calculations that are 
native (not .NET), thermodynamic servers are best implemented outside the .NET framework 
as well. 

Persistence 
Depending on the thermodynamic server, the end-user may be offered the option to modify 

the thermodynamic server configuration while it is being used. For example, the end-user may 
add compounds to the package, or change thermodynamic model selection or model 
parameters. At the start of the calculation, the configuration of the thermodynamic server must 
be transferred to the calculation threads, in order for the thermodynamic calculations to be 
consistent with the user’s configuration changes. CAPE-OPEN provides a mechanism for 
persistence of thermodynamic server configurations, and this mechanism provides the 
solution. The thermodynamic server calculation can be saved in the thread in which the user 
made the configuration changes. Each calculation thread then creates its own copy of the 
thermodynamic server. The configuration changes can subsequently be loaded into these 
copies from the data that was saved earlier. 

64 vs 32 bit implementations 
To complicate matters, 64-bit DLLs cannot be loaded into 32-bit simulators, and vice versa. 

Hence, 64-bit clients can only communicate with 32-bit servers if the server is out-of-process, 



which should be avoided. Currently, most simulation applications are 32-bit. More and more 
64-bit simulation applications will come out, as the demands on memory requirements 
increase. To be able to efficiently communicate with a thermodynamic server, the 
thermodynamic server must in this case be available as a 64-bit version. Currently this is not 
the case; nearly all thermodynamics server implementations are only available as 32-bits 
implementations. As these cannot be directly used by 64-bit applications, and as marshalling 
should be prevented, thermodynamic software vendors will have to provide both a 64-bit and 
32-bit implementation in the future if they are to be used efficiently with new and existing 
applications. 

Current status 
 The COFE simulation environment has implemented background calculations so that 
the main window remains responsive during calculations and multiple flowsheets can be 
solved at the same time. Although not geared to reducing CPU time, this implementation is a 
multi-threaded thermodynamics consuming application. Furthermore, COFE provides an 
option for parametric studies in which the simulation is solved multiple times with different 
inputs, to study the effect of inputs on outputs. Here, each simulation runs in its own thread 
and time is essentially reduced by the amount of threads that are concurrently running. COFE 
therefore provides a testing platform that thermodynamic software vendors can use to evaluate 
operation under multi-threaded conditions. Future work will focus on reducing solution time by 
employing multiple threads to solve a single flowsheet. 
 COMSOL Multiphysics implements both a 32-bit and 64-bit simulation application where 
the solution to problems is obtained using multi-threaded computations. The procedure as 
outlined above is implemented. This provides a means of testing for thermodynamic software 
vendors under multi-threaded conditions, as well as a platform to test 64-bit implementations. 
 Currently most thermodynamic servers are available as 32-bit in-process. With the 
increasing requirements on memory, it is foreseen that 64-bit versions of these servers will 
become available.  
 Preliminary testing in COFE has shown that not all thermodynamic servers are thread 
safe. It is expected that this too will improve in the near future.  

Conclusions 
 CAPE-OPEN provides a means of interfacing with multiple third party thermodynamic 
servers via a single implementation. As this reduces software development and maintenance 
overhead, CAPE-OPEN has found its way into many main stream simulation environments. 
The threading models of COM are well-defined; even though the COM technology may be 
fading out, the successful COM based CAPE-OPEN use in comparison to other 
thermodynamic interface standards is in part based on the fact that COM allows for 
marshalling-free high performance interactions between client and server. 
 To be able to make use of increasing computational performance of modern day 
computers, simulation applications will have to distribute the computational load over multiple 
cores. One possible way of obtaining this is by multi-threading. 
 As most thermodynamic servers are not implemented in a Free Threaded manner, 
multi-threading is best accomplished by creating a separate COM object for each thread that 
requires thermodynamic calculations. CAPE-OPEN persistence mechanisms allow for 
transferring thermodynamic server configurations from one thread to another. 



 Problems with existing implementations may arise from 32/64 bit issues and thread 
safety issues of existing thermodynamic servers. It is expected that these problems will be 
solved by the software vendors as multi-threading and 64-bit applications gain momentum. 
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