
1

Slide 1

Jasper van Baten - AmsterCHEM

Technical notes on
implementation of CAPE-OPEN

material objects

CAPE-OPEN

Bill Barrett – US EPA

Welcome to the short course on CAPE-OPEN Material objects. These slides are
from a CAPE-OPEN training session on the CAPE-OPEN European conference,
May 3, Freising, Germany. Along with this training, the sample code from
“MiniSim” was used, implementing a CAPE-OPEN mini PME for which the focus
was on a version 1.1 CAPE-OPEN Thermo Material Object that can be used for
communication with a Unit Operation as well as with a Property Package. The
MiniSim example code is available to CO-LaN members.

2

Slide 2

What is CAPE-OPEN?

The CAPE-OPEN standard is the de facto standard
for interfacing process modelling software
components for use in the design and operation of
chemical processes. It is based on universally
recognised software technologies, such as COM
and CORBA. The CO standard is open, multi-
platform, uniform and available free of charge.

(Note: practical implementations restricted to COM
at Windows platforms)

I am sure we have all studies the CAPE-OPEN brochure. It states: “The CAPE-
OPEN standard is the de facto standard for interfacing process modelling software
components for use in the design and operation of chemical processes. It is based on
universally recognised software technologies, such as COM and CORBA. The CO
standard is open, multi-platform, uniform and available free of charge.”. It says
COM and CORBA, but practically all implementations are COM based. This also
diminishes its multi-platform status: COM is Windows specific, so we are looking
mostly at Windows platforms.

3

Slide 3

What is CAPE-OPEN?

It is described in a formal documentation set
covering areas such as unit operations, physical
properties and numerical solvers, (…). In practice, it
enables components supplied by third parties, such
as niche physical property packages or unit
operation models, to be used in “plug and play”
mode in commercial process modelling software
tools.

(Note: practical implementations limited to physical
property packages and unit operations)

The CAPE-OPEN brochure further states that “It is described in a formal
documentation set covering areas such as unit operations, physical properties and
numerical solvers, (…). In practice, it enables components supplied by third parties,
such as niche physical property packages or unit operation models, to be used in
“plug and play” mode in commercial process modelling software tools.”. There are
one or two numerical solver implementations around, but so far I have to find
people that implement a unit operation that does not have its own solvers on board.
Hence, practically CAPE-OPEN in this stage means application transparent
thermodynamic property ssytems and application transparent unit operations.

4

Slide 4

What is CAPE-OPEN?

In reality this currently means:

• physical property package implementations

• unit operation implementations

• support for both of these in major simulation engines

• restricted to COM on Windows

• 28 different documents describing only version 1.0

• about 10 of those relevant to v1.0 material objects

• all summarized in one IDL

So when we talk about CAPE-OPEN, we generally refer to physical property
package implementations and unit operation implementations, as well as support for
both of these in most major simulation engines. We are looking at COM based,
hence Windows implementations. The documentation set (when I last counted) was
28 documents for version 1.0 alone. About 10 of these are relevant to
implementation of material objects, with the thermo specification of course being
the major one. Other ones include the Error common interfaces, the Unit Operation
interfaces, the identification common interfaces, method & tools documents, etc.
All CAPE-OPEN definitions however are conveniently gathered in one IDL: IDL
stands for Interface Definition Language, which is how software tools import the
CAPE-OPEN definitions.

5

Slide 5

What is CAPE-OPEN?

proprietary sub
models

proprietary sub
models
built-in

sub models
user sub models

(non CAPE-OPEN)
user sub models

(non CAPE-OPEN)
user sub models

(non CAPE-OPEN)
3rd party sub

models (CAPE-
OPEN)

3rd party sub
models (CAPE-

OPEN)

3rd party sub
models

(CAPE-OPEN)

Simulation environment process space

overall process model

Typically if we look at a simulation environment, we will find that there is an
overall process model, such as a flowsheet. The application that does that for us,
indicated in green, also typically has a large set of built-in models, such as thermo
models and unit operations. And usually there is some application specific method
of adding user models, shown here on the right. Often this is FORTRAN based,
where the FORTRAN functions to be implemented are very specific to the
application at hand.
In the middle we see CAPE-OPEN as a way to add user-defined or third party
models.

6

Slide 6

What is CAPE-OPEN?

proprietary sub
models

proprietary sub
models
built-in

sub models
user sub models

(non CAPE-OPEN)
user sub models

(non CAPE-OPEN)
user sub models

(non CAPE-OPEN)
3rd party sub

models (CAPE-
OPEN)

3rd party sub
models (CAPE-

OPEN)

3rd party sub
models

(CAPE-OPEN)

Simulation environment process space

overall process model

3rd party sub
models (CAPE-

OPEN)

3rd party sub
models (CAPE-

OPEN)

Physical
Property
Packages

3rd party sub
models (CAPE-

OPEN)

3rd party sub
models (CAPE-

OPEN)
Unit

Operations

Having a closer look – as we stated earlier – we will find that this applies mostly to
unit operations and physical property packages. In both cases, a CAPE-OPEN
material object implementation is required to talk to these. This is what we will be
talking about today.

7

Slide 7

representation of a material

connected to a unit operation as material stream

passed to a property package for calculation inputs
and calculation results

Function of the Material Object

This short course deals with CAPE-OPEN Material Object interfaces. The Material
Object interfaces lie at the heart of CAPE-OPEN communication between PMEs
and PMCs. A PME as a CAPE-OPEN Process Modeling Environment. This is also
referred to as COSE, CAPE-OPEN Simulation Environment. In short; simulation
environment or simulation application.
A PMC is a Process Modeling Client. These represents models loaded into the
simulation application. The most common PMC types are unit operations and
property packages. Unit operations are representations of physical equipment
(pumps, distillation columns, reactors, etc…). Property Packages are
thermodynamic calculation engines that allow us to calculate physical and
thermodynamic properties, to calculate thermodynamic phase equilibria, and to get
details about chemical compounds and phases. We will use the term chemical
compounds through-out the course. This is the term that is adopted for chemical
species in CAPE-OPEN version 1.1 thermo. In CAPE-OPEN version 1.0 thermo,
chemical species were called Components. This term however was dropped because
of the ambiguity; the term components is also used for software components. The
functionality of a Property Package is largely reflected in the functionality of a
Material Object.
Both unit operation PMCs and Property Package PMCs will be used and discussed
in this course.
So – the Material Object represents a Material. It is used in communication with
Unit Operation PMCs as a representation of material streams connected to material
ports, and it is used as property storage object in communication with a Property
Package PMC.

8

Slide 8

representation of a material
typically store T, P, compositions, flows, phases,
properties, state (equilibrium or not, phase existence),
…

connected to a unit operation as material stream

passed to a property package for calculation inputs
and calculation results

Function of the Material Object

Thermodynamic and physical properties (with some exceptions that we will see
later on) are stored on the Material Object. The special properties in CAPE-OPEN
are pressure, temperature, flow, totalFlow, fraction and phaseFraction. Flow – as
opposed to totalFlow – represents the flow of each compound. Fraction is the name
for composition, which can be either mole fraction or mass fraction. Other than the
special properties, many other properties can be stored on a material object, such as
enthalpy, density, viscosity and so on. These properties have a distinct number of
classifications, and depending on the CAPE-OPEN version we are using, each of
these property classes has its own functions to get and set these properties.
Other than physical and thermodynamic properties, the Material object keeps track
of the current state: which phases are present, and whether the material object is in
thermodynamic phase equilibrium.

9

Slide 9

representation of a material

connected to a unit operation as material stream

- inlet and outlet ports connect to ‘streams’
- material ‘stream’ is Material Object
- other ‘streams’: Energy / Information
- unit cannot write data to inlet stream
- unit can duplicate inlet stream for calculations
- unit must flash outlet material streams

passed to a property package for calculation inputs
and calculation results

Function of the Material Object

One of the two major applications of a Material Object is to connect it to a material
port of a Unit Operation. Say we have a pump unit operation, with a single inlet port
and a single outlet port. The inlet port will be connected to a Material Object that
contains the feed conditions of the pump. When the pump calculates, it obtains the
inlet conditions. It may do some thermodynamic calculations. During its
calculation, it must specify sufficient conditions for a thermodynamic equilibrium at
the outlet port. The pump will set these properties on the outlet port, and then
instruct the material object connected to the outlet port to perform a thermodynamic
equilibrium calculation.
Unit operations may have multiple in- and outlet ports of course. It is up to the
simulation application, possibly with help of user interaction, to connect the proper
material objects to the proper ports. Not all ports connect to material objects
however. Only material ports do. Other port types are energy and information ports.
These connect to different kinds of objects, which is not part of the scope of this
course. A port will – in general – check what is connected to it. A material port that
expects CAPE-OPEN version 1.1 thermo may very well refuse to connect to other
objects, such as version 1.0 Material Objects.
…

10

Slide 10

representation of a material

connected to a unit operation as material stream

- inlet and outlet ports connect to ‘streams’
- material ‘stream’ is Material Object
- other ‘streams’: Energy / Information
- unit cannot write data to inlet stream
- unit can duplicate inlet stream for calculations
- unit must flash outlet material streams

passed to a property package for calculation inputs
and calculation results

Function of the Material Object

…
A unit operation may not set properties or perform calculations on material objects
connected to the inlet ports. It can however duplicate such a material object, and
perform calculations on the duplicate. Each outlet port that is connected must be
flashed by the unit operation. Not all ports may need to be connected. That depends
on the unit operation. For example, a mixer unit operation could have 10 inlet ports
of which one or more need to be connected. The unit operation can check valid
connections during the Validate step of the unit operation.
A unit operation may be able to deal only with version 1.0 thermo, or only with
version 1.1 thermo, or both. When trying to connect a material object to a material
port, the unit operation attempts to get the proper interface it needs. If this interface
is not present, the unit operaton may refuse the port connection.

11

Slide 11

representation of a material

connected to a unit operation as material stream

passed to a property package for calculation inputs
and calculation results

- PME sets properties on MO
- PME asks property package (PP) to perform calculation
- PP obtains calculation inputs from MO
- PP performs calculations
- PP sets calculation results on MO

Function of the Material Object

The second major use of a Material object is in communication with the Property
package. The typical order of operation of a calculation using a property package is
indicated here. First, the simulation application sets the required inputs for the
calculation on the material object. The required inputs depends on the type of
property calculation. For a vapor enthalpy calculation for example, this would be
pressure, temperature and composition. Then, the simulation application asks the
property package to do some calculation. With this request, it tells the Property
Package which Material Object to use for that. The Property Package then obtains
the required information from the property package. For the vapor enthalpy
calculations, it would typically ask for which compounds are present, and which
pressure, temperature and composition. Then the Property Package performs the
calculation. The calculation results are stored by the Property Package on the
Material Object, and control is returned to the simulation application.

12

Slide 12

Material Object ownership

Simulation environment

Material Object Material Object

Unit Operation Property Package

Simulation environment (PME) owns MO

Communication between PMC and MO: CAPE-OPEN

Communication between PME and MO: native

mat.T = 298.15

Here we see how it is organized in terms of software components. The Unit
Operation PMCs and Property Package PMCs are external components, typically –
but not necessarily – implemented by a DLL as COM object. The Material Object is
implemented by the simulation application. The green area shows the application
space of the simulation application.
So the simulation application communicates with the Unit Operation and with the
Property Package. It does so in two ways: directly and via Material Objects. A
direct communication with a unit operation for example would be asking the unit
operation to perform a calculation, or asking for a collection of the ports on the unit
operation. All stream inputs and outputs however are communicated through
Material Objects. A similar story holds for the Property Package. A direct request
from the simulation application would be a request to perform a calculation.
Calculation in- and outputs are communicated through the Material Object.
All interactions between the simulation application and the PMC go via CAPE-
OPEN interfaces. The simulation application also needs to set and get data to its
Material Objects. These Material Objects are however owned and implemented by
the simulation application. Of course the simulation application can make CAPE-
OPEN calls on the material objects, but it does not have to. It can access the
variables and functions of the Material Object directly. Native communication
between a simulation environment and its Material Objects is generally easier to
implement, and more-over, much more efficient. …

13

Slide 13

Material Object ownership

Simulation environment

Material Object Material Object

Unit Operation Property Package

Simulation environment (PME) owns MO

Communication between PMC and MO: CAPE-OPEN

Communication between PME and MO: native

mat.T = 298.15

… For example, a simulation application could set the overall temperature on a
Material Object using the CAPE-OPEN call SetOverall Property, passing the
property name – “Temperature” – a place holder for the property basis – nothing –
and a VARIANT object containing a double precision array with one element
holding the value of temperature. The material would look at the property argument,
compare that to the string “Temperature”, check the basis argument, check the type
and dimension of the VARIANT object, extract the value from the VARIANT, and
set is temperature.
It is all much easier if the simulation application would just do mat.T = value, which
it can.

14

Slide 14

wrapper around existing material representation:
Most common; e.g. to interface an proprietary
simulation application material stream with CAPE-
OPEN.

material object designed to allow for communication with
property package: state is specified, passed to PP,
calculation is done, results are retrieved

Material object that can do both: passed to PP as
well as to unit operations. Most versatile.

Material Object implementation types

Depending on the purpose, we may identify how we want to go about implementing
the Material Object. A common situation is that we are dealing with an existing
simulation application, and we want to extend its functionality to include CAPE-
OPEN objects. This means there is some sort of description of a material or stream
already present in the application, and the Material Object we write will be a
wrapper between its data and methods and CAPE-OPEN.
Another situation is that we want to have a Material Object only to be able to
perform thermodynamic calculations using a CAPE-OPEN property package. These
types of Material Objects can be rather simple, as we know in advance exactly
which property we expect.
A more general type of Material Object we will concentrate on today: one that can
be passed to Unit Operations as well as Property Packages.

15

Slide 15

Expose set of compounds and phases

Storage of property values

Delegation of calculation calls to Property Package

Conversion of basis

Keep track of state (e.g. whether in equilibrium,
which phases are present, etc)

Keep track of error status of last call

Material object tasks:

To be able to work with Material Objects, a Material Object must implement a
number of tasks… (task enumeration) In the next slides, each of these tasks will be
elaborated upon.

16

Slide 16

Expose set of compounds and phases

- compounds: ID, name, CAS, boil temp, MW

- phases: name, state of aggregation, key compound…

- all or subset of the compounds and phases exposed by
PP

- some calls may be forwarded to the PP, but getting the
list of compounds and phases NOT: the PP will ask
the MO

- so: when loading PP; asks for supported lists. Make
selection of sub-sets. Return stored lists when asked.

Material object tasks:

The Material Object must expose which compounds and phases are present and
supported. For compounds, these lists are the same. The material object will
typically support a list of compounds. All these compounds are both supported and
present. Possibly with a composition (fraction) of zero.
For phases these lists are different. A material object may support phases “Vapor”,
“Liquid1” and “Liquid2”, but at any given time, the phases present (and possibly in
equilibrium) may be only “Vapor”, or for example only “Liquid1” and “Liquid2”.
The information about compounds that are present and supported is typically the
compound ID, name, CAS registry number, normal boiling point and molecular
weight. The compound ID is the most important one; this string value must be
unique for each compound, and is used in the communication with a Material
Object and PME to identify compounds. It may very well have the same value as
the compound name.
Phases are treated differently in version 1.0 and version 1.1 thermo. In version 1.0
thermo, originally only phases “Vapor”, “Liquid” and “Solid” were allowed. This
was later changed into allowing multiple phases of the same aggregation state, as
long as the phase ID started with the aggregation state. For example, a version 1.0
Property Package or Material Object could support liquid phases “Liquid” and
“Liquid1” or “LiquidWater”.
If the thermodynamic calculations are performed by a Property Package, typically
the Material Object exposes the same set as compounds and phases as exposed by
the Property Package. This is not required though. A property package may support
15 different compounds, only 10 of which are actually used in the simulation. The
Property Package would then expose all 15 supported compounds, whereas the
material object only supports the 10 compound used in the simulation. A Unit
Operation talking to the Material Object would only see the 10 exposed
compounds

17

Slide 17

Expose set of compounds and phases

- compounds: ID, name, CAS, boil temp, MW

- phases: name, state of aggregation, key compound…

- all or subset of the compounds and phases exposed by
PP

- some calls may be forwarded to the PP, but getting the
list of compounds and phases NOT: the PP will ask
the MO

- so: when loading PP; asks for supported lists. Make
selection of sub-sets. Return stored lists when asked.

Material object tasks:

…
The Material Object must expose which compounds and phases are present and
supported. For compounds, these lists are the same. The material object will
typically support a list of compounds. All these compounds are both supported and
present. Possibly with a composition If a Property Package is used to do the
calculations, the Material Object will typically forward many calls that are made by
PMCs – for example a unit operation – directly to the Property Package. This must
not be done for the functions that expose compounds and phases though. For a
vapor enthalpy calculation performed by the Property Package, the Property
Package will start by asking: for which compounds does the calculation need to be
performed? It will ask the material. If the material asks the Property Package in
turn, you run the risk of an infinite loop (in this case not likely, because the Property
Package will not ask the Material Object when it gets a request for which
compounds it supports).
In either case, the calls for supported compound and phase lists are made rather
frequently. It is simply not efficient to forward these calls each time. The thing to do
is – when you load the Property Package – you ask for the supported compounds
and phases once. Then you may make a selection of sub sets of these. The
simulation application remembers the resulting lists, and these lists are directly
returned by the Material Object.

18

Slide 18

Storage of property values

- Nearly all property values are stored at the MO

- Exceptions:
> T- and P-dependent properties using v1.1 thermo
> CalcAndGetLnPhi
> compound constant values

- Stored values serve as representation for in- and outlet
streams for Unit Operations

- Stored values serve as inputs and outputs for thermo-
dynamic calculations

Material object tasks:

The main task of the Material Object is to store thermodynamic and physical
properties. This functionality will be implemented by CAPE-OPEN interfaces
ICapeThermoMaterialObject (version 1.0 thermo) or ICapeThermoMaterial
(version 1.1 thermo). Nearly all thermodynamic and physical properties that are
communicated between PMCs and the simulation application are stored at the
Material Object. There are a few exceptions. When using version 1.1 thermo,
calculation of compound properties that depend only on pressure or temperature are
not stored at the Material Object, they are returned directly as a result of the
function call. Similarly, the version 1.1 thermo interface exposes a shortcut method
for obtaining results of fugacity calculations. The calculation results are returned as
arguments to the function call.
Also values that are constant for each compound – such as critical properties,
molecular weight, … - are not stored, but directly retrieved by the function call.
This is the case for both version 1.0 and version 1.1 thermo.
The properties that are stored on the material object can represent the state of a
stream in the flowsheet. As such, they serve as inputs and outputs for Unit
Operations. As shown before, the stored properties also represent the in- and outputs
to thermodynamic calculation. If a Unit Operation would want to know vapor
enthalpy, it would store pressure, temperature and composition on the Material
Object, then ask the Material Object to do the calculation of vapor enthalpy. If the
Material Object uses a Property Package to do its calculations, it will forward this
call to the Property Package. The calculation is done, and stored on the Material
Object. Control is returned to the Unit Operation, that will then retrieve the
calculated vapor enthalpy from the Material Object.

19

Slide 19

Delegation of calculation calls to Property Package

- If a Material Object uses a Property Package, calculation
requests must be forwarded to the Property Package

- If the Material Object does not use a Property Package,
the calculations must be done by the PME

Material object tasks:

In the previous example, the unit operation asked the Material Object to calculate
the vapor enthalpy. The Material Object in turn asks the Property Package to do the
calculation. The Unit Operation never talks directly to the Property Package. In fact,
there might not even be a a Property Package that is used for thermodynamic
calculations. The Unit Operation will never know. It just asks the Material Object to
do any calculation.
If there is no Property Package, the requested calculation must be performed by the
simulation application somehow. This is of course implementation dependent.

20

Slide 20

Conversion of basis (I)

- Properties have no basis, or basis=“Mole” or “Mass”

- Temperature and pressure: no basis
- Fraction, phaseFraction: mole or mass fraction
- Flow, totalFlow: mol / s or kg / s

- Other properties: dependent on property:

- Enthalpy: J/mol or J/kg
- Viscosity, molecularWeight: no basis

-Derivatives:

- mole number derivatives should have mole or no basis

Material object tasks:

Conversion of basis is a task of the Material Object. It is one of the more
complicated tasks when implementing a Material Object. So let’s have a closer look
at the basis concept.
A property either has no basis, or it has a basis. If it has a basis, the basis is molar or
mass. Basis is identified by the string “mole” or “mass”, or an empty string (NULL
in COM)
Of the special properties, temperature and pressure have no basis. Their units or
measure are Kelvin and Pascal. Basis should not be confused with unit of measure.
Fraction and phase fraction have a basis. Depending on the basis, they are
represented as mole or mass fractions.
Flow and totalFlow (remember that flow is the compound flow) have a basis. Their
units of measure are mol / s or kg / s, depending on the basis.
Other properties may or may not have a basis. This depends no the property.
Typically, the ones having a basis are the extensive ones, such as enthalpy. Its unit
of measure is J/mol or J/kg, depending on the basis. With a few exceptions (such as
density) intensive properties do not have a basis. An example is viscosity. A special
case is property molecularWeight. It is relative w.r.t. the mass of carbon divided by
12, hence dimensionless, has no unit of measure. If you want to give it a unit of
measure, call it gr/mol. It has no basis.
Temperature and pressure derivatives change the unit of measure of a property, but
not its basis. Mole fraction derivatives change neither the basis nor the unit of
measure. Mole number derivatives are a special case. It is advised to not use the
mass basis for mole number derivatives. More information on this is given in the
version 1.1 spec.

21

Slide 21

Conversion of basis (II) conversion of fractions:

mole to mass:

mass to mole:

Material object tasks:

∑
=

=
compsN

j
jmolej

imolei
massi

MWX

MWX
X

1
,

,
,

∑
=

=
compsN

j
jmassj

imassi
molei

MWX

MWX
X

1
,

,
,

/

/

Conversion of fractions – composition – from mole to mass basis is a matter of
multiplying with the molecular weight and renormalizing. Hence, this conversion
cannot be done – as with all other mass / mole conversions – if not all molecular
weights are known. This can be the case, for example when your simulation
involves a compound like cement.
The composition conversion can also not be done if the composition is only
partially known, as it involves renormalizaton. In other words, in a system with
methane, ethane and propane, you cannot convert a mole fraction of ethane to a
mass fraction if the compositions of ethane and propane are not known.
Conversion of mass fraction to mole fraction is similar, but divide rather than
multiple by molecular weight.
Note that this presumes the starting fractions add up to unity. If we start with a total
mole fraction of 0.9, these formulas will give us a total mass fraction of 1.0. Of
course starting with a total mole fraction of 1.0 this answer is unique and correct. If
not, the answer is subject to choice, and it is debatable what is correct. To end up
with a total mass fraction of 0.9 does not appear to be correct, hence we make the
normalization choice here.

22

Slide 22

Conversion of basis (III) conversion of phase fractions:

mole to mass:

mass to mole:

With:

Material object tasks:

∑
=

Θ

Θ
=Θ

phasesN

j
jmolej

imolei
massi

PMW

PMW

1
,

,
,

∑
=

Θ

Θ
=Θ

phasesN

j
jmassj

imassi
molei

PMW

PMW

1
,

,
,

/

/

∑
=

=
compsN

j
jphasemoleji MWXPMW

1
,,

Mass / mole conversion of phase fractions is a bit more complex. The formula is
similar to conversion of compositions, but rather than the fractions, the summation
and normalization is over all phase fractions, and rather than the compound
molecular weight you use the phase molecular weight PMW. The phase molecular
weight can be calculated as the summation over composition in mole fractions in
that phase times the compound molecular weight.
Hence, to do a mole / mass conversion for phase fractions, all phase fractions and
all phase compositions must be known.
Notice that this formula assumes that all phase fractions are known in the same
basis, which is likely but not necessarily the case. If this is not the case, and you still
want to support the conversion, the calculation is only slightly more complex.
Also shown here is the calculation for the phase molecular weight presuming the
phase compositions are known in mole basis. One can of course simply apply the
fraction conversion formula on the previous slide if the phase composition is known
in mass basis.

23

Slide 23

Conversion of basis (IV) conversion of flow:

mole to mass:

mass to mole:

Material object tasks:

imoleimassi MWFF ,
3

, 10−=

()i
massi

molei MW
F

F 3
,

, 10−=

Conversion of compound flow for compound i from mole to mass basis is a matter
of multiplication by its molecular weight. Do not forget the correction factor, as we
have relative molecular weight, instead of kg/mol.
Mass to mole: divide by the corrected molecular weight. Here, the molecular weight
for conversion of compound i is that of compound i.

24

Slide 24

Conversion of basis (V) conversion of total flow:

mole to mass:

mass to mole:

Material object tasks:

MWFF molemass
310−=

()MW
FF mass

mole 310−=

∑
=

=
compsN

j
jmolej MWXMW

1
,

Conversion for total flow is very similar to the conversion of compound flow.
Rather than the compound molecular weight we need to use the mixture molecular
weight in this case. This happens to be the same as the phase molecular weight we
saw earlier: the summation of molar composition times molecular weight of each
compound.

25

Slide 25

Conversion of basis (VI) other properties

- conversion depends on property

- we must know

- how property depends on mole / mass
- which MW to use

- enthalpy: J/mol or J/kg, conversionOrder = -1
- density: mol/m3 or kg/m3, conversionOrder = 1
- viscosity: conversionOrder = 0

- mole to mass: * MW conversionOrder

- mass to mole: * MW -conversionOrder

Material object tasks:

Basis conversions of other properties depends on the properties at hand. For
implementation purposes, it is convenient to generalise the approach. We should
essentially know – for each property – how it depends on mass or mole. This can of
course be derived from it unit of measure. Also, we should know which molecular
weight to use for the basis conversions. This can be the compound molecular
weight, or the phase mixture molecular weight that we have defined earlier. The
phase molecular weight and compound molecular weight are of course equal for
systems with a single compound. For systems with multiple compounds, the
composition is required to calculate the phase molecular weight.
Let us start by generalizing our conversion approach by defining a conversion order.
The conversion order is the power of mole or mass in the unit of measure. For all
extensive properties – like enthalpy – it has a value of -1. For all properties that do
not depend on basis, it has a value of 0; basis conversions do not apply to these
properties. With one exception, -1 and 0 are the only conversionOrders you will find
for properties that are currently defined in the scope of CAPE-OPEN. The one
exception is density: it has a conversion order of 1.
To go from mole to mass basis, we multiply with molecular weight to the power of
conversionOrder. In the other direction, the conversion order simply changes sign.
…

26

Slide 26

Conversion of basis (VI) other properties

- conversion depends on property

- we must know

- how property depends on mole / mass
- which MW to use

- enthalpy: J/mol or J/kg, conversionOrder = -1
- density: mol/m3 or kg/m3, conversionOrder = 1
- viscosity: conversionOrder = 0

- mole to mass: * MW conversionOrder

- mass to mole: * MW -conversionOrder

Material object tasks:

…
So our algorithm could be: get the properties conversion order. If not zero, check if
the property is known in the same basis as it was stored. In that case, set
conversionOrder to zero, as no conversion is required. If not zero, check if it is mass
to mole basis conversion. In that case, set the conversion order to its negative value.
Now we end up with a number that – if nonzero – is the power for the molecular
weight in the conversion.
As the power can only be 1 or -1 with the current property definitions, actually
using a power calculations is of course not very efficient. Best to check for 1, in
which case the result must be multiplied by molecular weight, or -1, in which case
the result must be divided by molecular weight.
Don’t forget to correct molecular weight by a factor 1/1000 because of the kg/mol
rather than gr/mol units required for conversion.

27

Slide 27

Conversion of basis (VII) which MW?

- version 1.1: always mixture MW

- version 1.0: compound MWs for many ‘pure’ calculations

(e.g. ‘pure’ enthalpy)

- Mole number derivatives: undefined, do not perform
conversion, see remarks in v1.1 spec

Material object tasks:

This leaves us the question which molecular weight to use. Generally, this is the
mixture molecular weight. The story is somewhat more complex for version 1.0,
where we can specify ‘pure’ property calculations. For mixture properties such as
enthalpy, that are calculated using the ‘pure’ calculation type. For any ‘pure’
calculations, the v1.0 spec states: “pure” means that the property values refer to the
components when they are in pure state (not mixed with other components). This
means that composition is not actually used for these calculations, and therefore
should also not affect the basis conversion. The compound molecular weights
should be used here.
Pure calculations are not frequently used for mixture properties. It is perfectly ok
not to support them.

28

Slide 28

Conversion of basis (VIII)

Property conversions do not apply to properties that are
not stored at the Material Object:

- compound constants

- version 1.1:

- T / P dependent properties
- CalcAndGetLnPhi

- special case: GetTPFraction / GetOverallTPFraction

These are always obtained in a fixed basis

Material object tasks:

Property conversions are performed by the Material Object. They therefore do not
apply to properties that are not stored at the Material Object.
Compound constants for example always have a fixed basis – generally mole basis.
The unit of measure for liquidDensityAt25C is always mol/m3, never kg/m3.
The same holds for pressure and temperature dependent properties when using
version 1.1 thermo. More on these properties later.
Version 1.1 has some shortcut functions. One for calculation of fugacities. This
takes composition always in mole fraction. Another shortcut is GetTPFraction.
Again, composition is always in mole fraction.

29

Slide 29

Conversion of basis (IX) Implementation

- Store the property in the basis in which it is set

- Store the basis in which it is set

- Perform basis conversions only when getting properties

- Do not allow invalid basis

Material object tasks:

A material object is demanded to always be able to return a property in the basis in
which it was set. This is a very useful feature in simulations in which basis
conversions cannot be done, in the case molecular weights are not known for
example. Or, if composition is not known. Hence, we should store the property
always in the basis in which it was set. This means, we also need to remember for
each property in which basis it was set.
Then, if the property is retrieved from the material object, we apply basis
conversion if required, using the scheme as outlined in previous sheets.
Storing properties always in the same basis, for example always in mole basis, is a
bad idea. For starters, if the property was set in mass basis, and obtained in mass
basis, we are converting back and forth to mole basis for no reason. Not very
efficient.
More importantly, consider the following order of operations: a unit operation
specifies enthalpy in mass basis. Next, it specifies composition.
At the moment enthalpy was stored in mass basis, if we would have converted to
mole basis, we require the composition. This was not yet set by the unit operation.
So it may be unknown, or present at the material from a previous operation. The
former would result an error, the latter would result something worse: no error, but
wrong results.
Final remark: always check the basis for setting and getting properties. The material
object should not allow for setting temperature in mole basis, nor should it allow for
getting enthalpy without a basis (in the past at some point getting enthalpy without a
basis had a different meaning: the total enthalpy, e.g. J or J/s; due to ambiguous
documentation, one should not support this).

30

Slide 30

Expose set of compounds and phases

Storage of property values

Delegation of calculation calls to Property Package

Conversion of basis

Keep track of state (e.g. whether in equilibrium,
which phases are present, etc)

Keep track of error status of last call

Material object tasks:

Now that we have covered basis conversions, back to the Material Object tasks.
Two more tasks to cover…

31

Slide 31

Keep track of state

- Is the material in equilibrium?

- yes, directly after an equilibrium calculation
- no, in case any property is set

- Which phases are present?

- poorly defined in version 1.0

- equilibrium phases after an equilibrium call
- any phase for which a property is set

Material object tasks:

The simulator will want to know at various points whether a Material Object is
currently in equilibrium. For example to check whether the inlet streams to a Unit
Operation are ready for calculating the unit operation and for post-checking after
calculating the unit operation whether the unit operation has done its task of
flashing all outlet streams. Also, version 1.1 defines a function of getting all present
phases and their status. This function also requires to know whether the Material
Object, and hence the phases, are in equilibrium. Keeping track of equilibrium state
is easy: initially not. After an equilibrium calculation: yes. If we set any property,
then no.
It is also up to the Material Object to keep track of which phases are currently
present. A version 1.1 equilibrium calculations allows calculation for an equilibrium
on a subset of phases. The procedure for calculating an equilibrium using version
1.1 thermo is: set all phases that are to take part in the calculation as present,
calculate the equilibrium, set all resulting equilibrium phases as present.
Generally properties for phases that are not present cannot be obtained from a
Material Object. Without having to set the present phases on a Material Object,
CAPE-OPEN allows for the following sequence: set pressure, temperature and
composition for a given phase, calculate a phase property, obtain the result. For
such a sequence, the phase should automatically be marked as present. Hence, we
mark a phase as present at the moment any property is set for it.

32

Slide 32

Keep track of error status of last call

- store the error

- return an error code

- caller will ask for error message

Material object tasks:

Last task: keep track of error data when an error occurs. This task is common for all
CAPE-OPEN objects, hence also for Material Objects. In CAPE-OPEN, as soon as
an object encounters an error, it returns a CAPE-OPEN error code. This code is just
a number, the caller will likely want to know more information about the error, such
as a textual description of the error. So before we return the error code, we must
remember which information to return – such as the error description – in case the
caller asks for it.

33

Slide 33

Special properties

Compound constants

T- and P-dependent properties

Single-phase and Overall properties

Two-phase properties

Property classes:

The thermodynamic and physical properties defined by CAPE-OPEN can be
naturally divided in a number of property classes. This classification is very useful.
So useful, that the version 1.1 standard has separate interfaces and methods for most
of these property classes. This makes the version 1.1 standard much more pleasing
to use than the version 1.0 standard, where this classification is not really made. But
even when working with version 1.0, it is good to be aware of this classification, as
it groups properties into classes with very similar qualities.

34

Slide 34

Special properties must always be supported:

pressure and temperature:
- version 1.0: single value for material object
- version 1.1: one value for each present phase + Overall

fraction (composition)

phaseFraction

flow (per compound, not relevant in communication with PP)

totalFlow (not relevant in communication with PP)

Special properties:

The special properties we have seen before. They are pressure, temperature,
fraction, phaseFraction, flow and totalFlow. All of these properties must be
supported by a Material Object in general. When a Material Object however is only
used for communication with a Property Package, support of flow and total flow is
irrelevant, as a Property Package generally does not set and get their values.
Pressure and Temperature are defined as Material Object Global in version 1.0
thermo, but each phase can have a pressure and temperature in version 1.1 thermo.
This situation is not very common, and many Material Objects will behind the
screens only implement a single copy of pressure and temperature.
Fraction is the composition for a phase, or for the Overall phase. It is either a mole
or mass fraction, depending on the basis.
phaseFraction is the relative amount of a phase that is present. It does not apply to
the Overall phase.
Flow is compound flow, with one value for each compound. The sum of flow is
totalFlow. TotalFlow is wider supported than flow. Many material objects allow
getting flow and totalFlow for a phase, but setting them only for the Overall phase.
Special properties are always inputs to thermodynamic property calculations and are
never calculated by a Property Package, with the exception of an equilibrium
calculation.

35

Slide 35

Single value for each compound:

value can be string or double precision

value is universal per compound; no storage on MO

some values are passed with compound list

fixed basis (no basis conversion)

example: molecularWeight, criticalTemperature

Compound constants:

Compound constants do not depend on pressure, temperature or composition. There
are string constants, such as chemicalFormula or CASRegistryNumber, and double
precision constants, such as molecularWeight and criticalTemperature.
These values are not stored on the Material Object, there is only one such value per
compound.
Some of these values are obtained by the functions that you would call to get the list
of supported compounds. These are compound names, CAS numbers, molecular
weights and normal boiling points.
Basis conversion does not apply to compound constants. They are always in the
same basis. idealGasEnthalpyOfFormationAt25C is always in J/mol, never in J/kg.
The standardized compound constants and their unit of measure can be found in the
thermo specs.

36

Slide 36

only depend on pressure or temperature

one value for each compound

fixed basis (no basis conversion)

example: vaporPressure, glassTransitionTemperature

Pressure and temperature dependent properties:

Pressure and temperature dependent properties do not depend on composition.
Pressure dependent properties only depend on pressure. The only valid derivative is
that w.r.t. pressure. Temperature dependent properties only depend on temperature.
The only valid derivative is that w.r.t. to temperature. These properties always have
one value for each compound. Many implementations do not support any pressure
dependent properties, but temperature dependent properties are generally available,
such as vaporPressure.

37

Slide 37

value depends on pressure, temperature, fraction, phase

value can be scalar, vector (one value for each compound),
matrix (ncompound x ncompound), depending on which property
and which derivative

possibly no basis

possibly mole or mass basis: MO converts

pure / mixture

example: enthalpy, density, …

Single phase and Overall properties:

Single phase and overall properties are the same in version 1.0. The phase identifier
for overall properties is Overall. For version 1.1 there are different functions for
single phase and overall properties, the functions for overall properties do not take a
phase name.
Depending on the property, the value can be a scalar, such as mixture enthalpy, a
vector, such as fugacityCoefficient, or a matrix, currently only DiffusionCoefficient.
These properties depend on temperature, pressure, composition and the phase
specifier. Valid derivatives are those w.r.t. temperature, pressure and composition.
Temperature and pressure derivatives do not change the number of values, but
composition derivates do. The composition derivative of a scalar is a vector, the
composition derivative of a vector is a matrix and the composition derivative of
DiffusionCoefficient, - well so far I have not seen support for it.
Basis conversions apply as discussed earlier.
In version 1.0 there is the concept of pure and mixture calculations. For pressure
and temperature dependent properties, the proper qualifier would be Pure. For
Single phase and overall properties, Mixture is the common qualifier. But for these
properties, Pure can be specified as well, which changes the meaning of the
property. Pure single-phase properties are not widely supported. In version 1.1 the
concept of mixture and pure has disappeared.

38

Slide 38

value depends on two sets of
pressure, temperature, fraction, phase

value can be scalar, vector (one value for each compound),
matrix (ncompound x ncompound), depending on which property
and which derivative

Composition derivatives: 2 matrices (derivative w.r.t.
each phase)

poorly defined in version 1.0 thermo

example: kvalues, surfaceTension, …

Two-phase properties:

Two-phase properties are properties that depend on two phases. Hence, they depend
on two temperatures, pressures, compositions and phase identifiers. Two-phase
properties are not well defined in version 1.0 thermo. The only two phase properties
that are currently defined are surfaceTension and various flavours of K-values.
Surface tension is a scalar, Kvalues a vector.
Taking the composition derivatives would make for 2 vectors for surface tension
and two matrices for Kvalues. These are the composition derivatives with respect to
each phase. This does not hold for temperature and pressure derivatives, that are
considered to be w.r.t. a change in pressure or temperature of both phases involved.
In version 1 one would best stay away from two-phase properties as they are poorly
defined. For Kvalues, the work-around is simple. K-values are ratios of fugacity
coefficients, which are single phase properties. Surface tension in version 1.0 is
often implemented as a single-phase liquid property, not taking into account the
vapor phase. Liquid-liquid surface tension in version 1.0 cannot be calculated with
the original spec. But with the extensions to the spec that allow for phases “Liquid”
and “Liquid1” for example, you would calculate the mixture surface tension using a
two-phase identifier “LiquidLiquid1”.

39

Slide 39

.Dtemperature

(applies to T-dependent, single-phase and two-phase props)

.Dpressure

(applies to P-dependent, single-phase and two-phase props)

.DmolFraction

(applies to single-phase and two-phase props)

.Dmoles

(applies to single-phase and two-phase props)

Property derivatives:

Derivative support in CAPE-OPEN is accomplished by adding a period followed by
the derivative name to the property name. Derivatives are defined w.r.t. temperature
and pressure and composition. Composition derivatives come in two flavours: mole
fraction derivatives and mole number derivatives for 1 mole of substance. Revert to
the version 1.1 thermo spec for more details on their difference and use. For the
Material Object implementation it is of no consequence; the material object just
needs to be able to store them.

40

Slide 40

property class

basis dimension:
- whether or not to accept a basis
- how to convert from mole to mass basis
(e.g. density vs volume)

possibly: extensive vs. intensive

property dimension:

(scalar, vector, matrix)

Application must therefore have lists of property information
(lookup by case independent name: calls for hash table)

Material object must know things about a
property:

So far we have learned that the Material Object implementation must know some
things about a property. The following items are useful to tabulate and use inside a
simulation application.
Not mentioned on this slide is the name of the property. Mind that some properties
have a different name in version 1.0 than in version 1.1, so actually if we support
both versions, we should store two property names per property.
The property class: for version 1.1 implementations this allows compiling lists of
supported properties per property class. For version 1.0 implementations the
property class will tell you a lot about how to deal with a property.
The conversionOrder as defined before. This tells us whether setting and getting the
property requires a basis argument or no basis, and how we go about basis
conversions.
One could store whether a property is extensive or intensive. It is useful in some
cases; for more information see the definition of composition derivatives in the
version 1.1 spec.
The property dimension: whether it is a scalar, vector, or matrix. Useful for single-
and two phase properties, as for the other properties, this is implicitly known by the
property class.
These tabulated property definitions must frequently be looked up by the Material
Object. A handy implementation is to use a hash table to store the properties by
name; this table must use case independent hash keys for the strings though, as in
CAPE-OPEN, identifier strings are considered case-insensitive.

41

Slide 41

Interfaces to implement – I. Common Interfaces

ICapeIdentification
Error common interfaces

M
at

er
ia

l O
bj

ec
t

Now, as a CAPE-OPEN object, the Material Object must implement a number of
interfaces. Let start with the interfaces that are implemented by all CAPE-OPEN
objects. These are the identification and error interfaces.

42

Slide 42

Identification: name should be unique. When copying
a material, give it a new name

Error common interfaces: all errors that occur must
result in a CAPE-OPEN error code. The MO will
implement the appropriate interface for the caller
to get the error details

Notes on Common interfaces

The identification interface exposes a name and a description. The name should be
unique throughout the simulation, because the interface suggests it could be used to
identify the Material Object.
The error interfaces are used by the caller to retrieve error information when a
Material Object returns and error code. At the very least ECapeRoot, ECapeUser
and ECapeUnknown must be implemented.

43

Slide 43

Interfaces to implement – II. Thermo v 1.0

ICapeThermoMaterialObject
M

at
er

ia
l O

bj
ec

t

For Material Objects that support version 1.0 thermo, the
ICapeThermoMaterialObject interface must be implemented. This interface exposes
all functionality of the Material Object.

44

Slide 44

Interfaces to implement – III. Thermo v 1.1

ICapeThermoMaterial
M

at
er

ia
l O

bj
ec

t
ICapeThermoCompounds
ICapeThermoEquilibriumRoutine
ICapeThermoPhases
ICapeThermoPropertyRoutine
ICapeThermoUniversalConstant

For version 1.1 the functionality is split up in interfaces in a more structural manner.
All interfaces shown here, except for ICapeThermoMaterial, are also implemented
by a Property Package. The ICapeThermoMaterial interface is specific to a Material
Object implementation, and exposes functionality for property storage and present
phases.
The ICapeThermoCompounds interface exposes the functions for obtaining the
supported compounds and their compound constants, temperature dependent
properties and pressure dependent properties.
The ICapeThermoEquilibriumRoutine interface allows for performing flash
calculations.
The ICapeThermoPhases interace exposes functionality for getting supported phases
and their properties. Mind that the present phases are exposed by the
ICapeThermoMaterial interface.
The ICapeThermoPropertyRoutine allows for single- and two-phase property
calculations.
The ICapeThermoUniversalConstant interface allows to get values like gravitational
constant, Avogadro number and gas constant. It is not widely used.

45

Slide 45

Setting properties:

SetTwoPhasePropSetPropTwo-phase

SetOverallProp
SetSinglePhaseProp

SetPropSpecial, overall,
single-phase

N/A
N/A

SetPropP- and T-
dependent

N/AN/ACompound const.

Version 1.1Version 1.0

As you may have noticed, some items in this presentation are blue, and other black.
The blue ones we will see supported in the code that we will use for exercises later
on.
Here is a quick peek of how properties are set using version 1.0 and version 1.1
thermo. Compound constants are not stored by the material object. Pressure and
temperature dependent properties are also not stored, at least in version 1.1 thermo.
In version 1.0 thermo they are stored. All storage in version 1.0 thermo uses
SetProp. In version 1.1 thermo, the calls are split up with respect to property class.

46

Slide 46

Getting properties:

GetTwoPhasePropGetPropTwo-phase

GetOverallProp
GetSinglePhaseProp
CalcAndGetLnPhi

GetPropSpecial, overall,
single-phase

GetPDependentProperty
GetTDependentProperty

GetPropP- and T-
dependent

GetCompoundConstantGetCompone
ntConstant

Compound const.

Version 1.1Version 1.0

Getting properties is also somewhat different in the two thermo versions.
Compound constants are – in both versions – calculated and obtained in the same
call.
Pressure and temprature dependent properties in version 1.1 are calculated and
obtained in the same call. In version 1.0, you would need to calculate them before
you obtain them.
Overall, single phase and two-phase properties always need to be set or calculated
before you obtain them. Neither of these calls will calculate the properties for you.
In version 1.0 all properties are obtained with GetProp; in version 1.1 the
functionality is split up w.r.t. property classes.
In version 1.1, short-cuts are available to get pressure, temperature and composition
in a single call. These are GetTPFraction and GetOverallTPFraction.

47

Slide 47

Calculating properties:

CalcTwoPhasePropCalcPropTwo-phase

CalcSinglePhaseProp
CalcAndGetLnPhi

CalcPropSingle-phase

GetPDependentProperty
GetTDependentProperty

CalcPropP- and T-
dependent

N/AN/ACompound const.

Version 1.1Version 1.0

Compound constants are calculated in the same call as they are obtained. So no
special call for calculation. For version 1.1, the following funcitons will both
calculate and obtain values: GetPDependentProperty, GetPDependentProperty and
CalcAndGetLnPhi. Other functions just calculate properties, after which the
calculation results are stored at the Material Object. These are
CalcSinglePhaseProp and CalcTwoPhaseProp.
In version 1.0, all property calculations are done using CalcProp.

48

Slide 48

Reference state correction:

MO can optionally provide reference state correction
for enthalpy and entropy

Reference values calculated only once

Direction of conversion depends on who is asking
(whether or not property package is asking)

Store values as they are set, do conversion as they
are asked

∑−=
i

irefiPPSIM HxHH ,

Before the hand-on work, some notes on more exotic features of Material Objects.
It is possible for Material Objects to implement reference state correction for
enthalpy and entropy. This involves calculating the pure component enthalpy and
entropy values at the reference conditions once. Then – much like the principle of
basis conversion – the conversion can be done at the point the properties are
obtained. The conversion depends on who is asking. If it is the Property Package
that is asking, it should be an inverse reference state correction. So, if the material
supports reference state correction, we must store with the properties whether they
were set ‘before’ or ‘after’ reference state correction.
Note that this implies the Material Object needs to know who is making the call; a
SetProp for enthalpy by the Property Package means before reference state
correction whereas a SetProp for enthalpy by a Unit Operation means after
reference state correction.

49

Slide 49

Compound and phase mapping

PP compound IDs may differ from
simulation compound IDs

PP phase IDs may differ from simulation phase IDs

This situation is common when mixing property packages

MO should map IDs from simulation to PP before calling
PP

MO should map IDs from PP to simulation when called
by PP

MO thus needs to know who is calling a function

If a simulation uses multiple underlying thermodynamic systems, it is likely that the
phase and compound IDs in one loaded Property Package do not match phase and
compound IDs for the same phases and compound in another property package. So
in general, the phase and compound property IDs known by the simulation
environment and the non-property package PMCs (e.g. the unit operatons) may
differ from those exposed by the Property Package. When calling the Property
Package, you must use the original phase and compound IDs that the Property
Package initially supplied. Hence, some mapping may need to be done. Example, if
a compound is called C1 by a property package, and is known in the simulation as
METHANE, the Unit Operation may call the material object with a compound list
including METHANE. Before the Material Object passes the call on to the Property
Package, it must replace METHANE by C1.
Note that this requires that the Property Package needs to know who is calling the
function; it needs to know what set of names to map from and to.

50

Slide 50

Who’s calling me?

important for reference state correction

important for compound / phase ID mapping

may be useful for error reporting

the one that is calling is the one that currently has control

sufficient to know whether it is the PP or not, so
keep track only of PP having control

when unit operation is active, if MO is inlet stream,
disallow setting properties, calculating properties,
calculating equilibria

The last two slides indicated that the Material Object may need to know who is
calling a function; it is important for proper implementation of reference state
correction as well as compound and phase ID mapping. It may also be useful for
error reporting.
The caller of the Material Object is the software component that currently has
execution control. Often it is enough to know whether it is the Property Package
calling the Material Object, or not. So we may need to keep track on whether the
Property Package currently has execution control. This can be accomplished by
making a note of this before calling any function in the Property Package. This note
can be discarded as soon as the Property Package function call returns.
Sometimes it is useful to know that it is the Unit Operation making the call.
Specifically for Material Objects representing inlet streams. One could then
disallow setting or calculating properties or flashes, as a Unit Operation is not
supposed to do that on inlet streams.

51

Slide 51

More advances topics

choosing implementation platform (native vs .NET)

efficient property and state storage

mapping between version 1.0 and 1.1 thermo
(e.g. version 1.0 UO calling MO with version 1.1 PP)

mapping between version 1.1 and 1.0 thermo
(e.g. version 1.1 UO calling MO with version 1.0 PP)

caching of released MOs for re-use at Duplicate

providing derived properties

error trapping

This slide presents a list of further topics of interest when implementing Material
Objects for production platforms. With the test application that is implemented for
this course we do not have to be so picky, as it supports only one version of thermo,
and its efficiency is not critical.

…..

52

Slide 52

Pay special attention to data ownership:

Creator of data is not necessarily the owner

The owner must delete the data

IDL: [in], [in, out], [out, retval]

Data that you create and own, you can pre-allocate

As a final remark: as we will be using .NET for our implementation, we will not be
bothered with looking at data ownership. Most commonly, and implementation will
not be .NET based (or VB 6 based) so we are responsible for keeping track of data
ownership. Data ownership is important to keep track of, as it defines who must
destroy the data. Fail to destroy the data and you have a memory leak. Destroy the
data multiple times and you will find your application crashes.
CAPE-OPEN (and COM) define the interaction between different software
components. The software component that owns data must destroy it. This is not
necessarily the component that created the data. For example, if a PMC asks a
material for a property value, the material creates it, but the PMC owns it.
If you have a closer look at the IDL, you will find that each argument is marked
with [in], [in, out] or [out, retval]. This defines the ownership. [in] and [out,retval]
data is owned by the caller. For [in, out] data, the data that comes in is owned by the
implementer, and the data that goes out is owned by the caller. Hence, for a function
like GetCompoundList, we find that all arguments are marked [in, out]. As we
typically allocate the output data in the routine implementation, this means we must
free whatever is in the arguments when the routine gets invoked.

53

Slide 53

Sample code used for exercises is MiniSim (.NET based code); available for CO-
LaN members.

