
Slide 1

Jasper van Baten - AmsterCHEM

Technical notes on
implementation of CAPE-OPEN

material objects

CAPE-OPEN

Bill Barrett – US EPA

Slide 2

What is CAPE-OPEN?

The CAPE-OPEN standard is the de facto standard
for interfacing process modelling software
components for use in the design and operation of
chemical processes. It is based on universally
recognised software technologies, such as COM
and CORBA. The CO standard is open, multi-
platform, uniform and available free of charge.

(Note: practical implementations restricted to COM
at Windows platforms)

Slide 3

What is CAPE-OPEN?

It is described in a formal documentation set
covering areas such as unit operations, physical
properties and numerical solvers, (…). In practice, it
enables components supplied by third parties, such
as niche physical property packages or unit
operation models, to be used in “plug and play”
mode in commercial process modelling software
tools.

(Note: practical implementations limited to physical
property packages and unit operations)

Slide 4

What is CAPE-OPEN?

In reality this currently means:

• physical property package implementations

• unit operation implementations

• support for both of these in major simulation engines

• restricted to COM on Windows

• 28 different documents describing only version 1.0

• about 10 of those relevant to v1.0 material objects

• all summarized in one IDL

Slide 5

What is CAPE-OPEN?

proprietary sub
models

proprietary sub
models
built-in

sub models
user sub models

(non CAPE-OPEN)
user sub models

(non CAPE-OPEN)
user sub models

(non CAPE-OPEN)
3rd party sub

models (CAPE-
OPEN)

3rd party sub
models (CAPE-

OPEN)

3rd party sub
models

(CAPE-OPEN)

Simulation environment process space

overall process model

Slide 6

What is CAPE-OPEN?

proprietary sub
models

proprietary sub
models
built-in

sub models
user sub models

(non CAPE-OPEN)
user sub models

(non CAPE-OPEN)
user sub models

(non CAPE-OPEN)
3rd party sub

models (CAPE-
OPEN)

3rd party sub
models (CAPE-

OPEN)

3rd party sub
models

(CAPE-OPEN)

Simulation environment process space

overall process model

3rd party sub
models (CAPE-

OPEN)

3rd party sub
models (CAPE-

OPEN)

Physical
Property
Packages

3rd party sub
models (CAPE-

OPEN)

3rd party sub
models (CAPE-

OPEN)
Unit

Operations

Slide 7

representation of a material

connected to a unit operation as material stream

passed to a property package for calculation inputs
and calculation results

Function of the Material Object

Slide 8

representation of a material
typically store T, P, compositions, flows, phases,
properties, state (equilibrium or not, phase existence),
…

connected to a unit operation as material stream

passed to a property package for calculation inputs
and calculation results

Function of the Material Object

Slide 9

representation of a material

connected to a unit operation as material stream

- inlet and outlet ports connect to ‘streams’
- material ‘stream’ is Material Object
- other ‘streams’: Energy / Information
- unit cannot write data to inlet stream
- unit can duplicate inlet stream for calculations
- unit must flash outlet material streams

passed to a property package for calculation inputs
and calculation results

Function of the Material Object

Slide 10

representation of a material

connected to a unit operation as material stream

passed to a property package for calculation inputs
and calculation results

- PME sets properties on MO
- PME asks property package (PP) to perform calculation
- PP obtains calculation inputs from MO
- PP performs calculations
- PP sets calculation results on MO

Function of the Material Object

Slide 11

Material Object ownership

Simulation environment

Material Object Material Object

Unit Operation Property Package

Simulation environment (PME) owns MO

Communication between PMC and MO: CAPE-OPEN

Communication between PME and MO: native

mat.T = 298.15

Slide 12

wrapper around existing material representation:
Most common; e.g. to interface an proprietary
simulation application material stream with CAPE-
OPEN.

material object designed to allow for communication with
property package: state is specified, passed to PP,
calculation is done, results are retrieved

Material object that can do both: passed to PP as
well as to unit operations. Most versatile.

Material Object implementation types

Slide 13

Expose set of compounds and phases

Storage of property values

Delegation of calculation calls to Property Package

Conversion of basis

Keep track of state (e.g. whether in equilibrium,
which phases are present, etc)

Keep track of error status of last call

Material object tasks:

Slide 14

Expose set of compounds and phases

- compounds: ID, name, CAS, boil temp, MW

- phases: name, state of aggregation, key compound…

- all or subset of the compounds and phases exposed by
PP

- some calls may be forwarded to the PP, but getting the
list of compounds and phases NOT: the PP will ask
the MO

- so: when loading PP; asks for supported lists. Make
selection of sub-sets. Return stored lists when asked.

Material object tasks:

Slide 15

Storage of property values

- Nearly all property values are stored at the MO

- Exceptions:
> T- and P-dependent properties using v1.1 thermo
> CalcAndGetLnPhi
> compound constant values

- Stored values serve as representation for in- and outlet
streams for Unit Operations

- Stored values serve as inputs and outputs for thermo-
dynamic calculations

Material object tasks:

Slide 16

Delegation of calculation calls to Property Package

- If a Material Object uses a Property Package, calculation
requests must be forwarded to the Property Package

- If the Material Object does not use a Property Package,
the calculations must be done by the PME

Material object tasks:

Slide 17

Conversion of basis (I)

- Properties have no basis, or basis=“Mole” or “Mass”

- Temperature and pressure: no basis
- Fraction, phaseFraction: mole or mass fraction
- Flow, totalFlow: mol / s or kg / s

- Other properties: dependent on property:

- Enthalpy: J/mol or J/kg
- Viscosity, molecularWeight: no basis

-Derivatives:

- mole number derivatives should have mole or no basis

Material object tasks:

Slide 18

Conversion of basis (II) conversion of fractions:

mole to mass:

mass to mole:

Material object tasks:

∑
=

=
compsN

j
jmolej

imolei
massi

MWX

MWX
X

1
,

,
,

∑
=

=
compsN

j
jmassj

imassi
molei

MWX

MWX
X

1
,

,
,

/

/

Slide 19

Conversion of basis (III) conversion of phase fractions:

mole to mass:

mass to mole:

With:

Material object tasks:

∑
=

Θ

Θ
=Θ

phasesN

j
jmolej

imolei
massi

PMW

PMW

1
,

,
,

∑
=

Θ

Θ
=Θ

phasesN

j
jmassj

imassi
molei

PMW

PMW

1
,

,
,

/

/

∑
=

=
compsN

j
jphasemoleji MWXPMW

1
,,

Slide 20

Conversion of basis (IV) conversion of flow:

mole to mass:

mass to mole:

Material object tasks:

imoleimassi MWFF ,
3

, 10−=

()i
massi

molei MW
F

F 3
,

, 10−=

Slide 21

Conversion of basis (V) conversion of total flow:

mole to mass:

mass to mole:

Material object tasks:

MWFF molemass
310−=

()MW
FF mass

mole 310−=

∑
=

=
compsN

j
jmolej MWXMW

1
,

Slide 22

Conversion of basis (VI) other properties

- conversion depends on property

- we must know

- how property depends on mole / mass
- which MW to use

- enthalpy: J/mol or J/kg, conversionOrder = -1
- density: mol/m3 or kg/m3, conversionOrder = 1
- viscosity: conversionOrder = 0

- mole to mass: * MW conversionOrder

- mass to mole: * MW -conversionOrder

Material object tasks:

Slide 23

Conversion of basis (VII) which MW?

- version 1.1: always mixture MW

- version 1.0: compound MWs for many ‘pure’ calculations

(e.g. ‘pure’ enthalpy)

- Mole number derivatives: undefined, do not perform
conversion, see remarks in v1.1 spec

Material object tasks:

Slide 24

Conversion of basis (VIII)

Property conversions do not apply to properties that are
not stored at the Material Object:

- compound constants

- version 1.1:

- T / P dependent properties
- CalcAndGetLnPhi

- special case: GetTPFraction / GetOverallTPFraction

These are always obtained in a fixed basis

Material object tasks:

Slide 25

Conversion of basis (IX) Implementation

- Store the property in the basis in which it is set

- Store the basis in which it is set

- Perform basis conversions only when getting properties

- Do not allow invalid basis

Material object tasks:

Slide 26

Expose set of compounds and phases

Storage of property values

Delegation of calculation calls to Property Package

Conversion of basis

Keep track of state (e.g. whether in equilibrium,
which phases are present, etc)

Keep track of error status of last call

Material object tasks:

Slide 27

Keep track of state

- Is the material in equilibrium?

- yes, directly after an equilibrium calculation
- no, in case any property is set

- Which phases are present?

- poorly defined in version 1.0

- equilibrium phases after an equilibrium call
- any phase for which a property is set

Material object tasks:

Slide 28

Keep track of error status of last call

- store the error

- return an error code

- caller will ask for error message

Material object tasks:

Slide 29

Special properties

Compound constants

T- and P-dependent properties

Single-phase and Overall properties

Two-phase properties

Property classes:

Slide 30

Special properties must always be supported:

pressure and temperature:
- version 1.0: single value for material object
- version 1.1: one value for each present phase + Overall

fraction (composition)

phaseFraction

flow (per compound, not relevant in communication with PP)

totalFlow (not relevant in communication with PP)

Special properties:

Slide 31

Single value for each compound:

value can be string or double precision

value is universal per compound; no storage on MO

some values are passed with compound list

fixed basis (no basis conversion)

example: molecularWeight, criticalTemperature

Compound constants:

Slide 32

only depend on pressure or temperature

one value for each compound

fixed basis (no basis conversion)

example: vaporPressure, glassTransitionTemperature

Pressure and temperature dependent properties:

Slide 33

value depends on pressure, temperature, fraction, phase

value can be scalar, vector (one value for each compound),
matrix (ncompound x ncompound), depending on which property
and which derivative

possibly no basis

possibly mole or mass basis: MO converts

pure / mixture

example: enthalpy, density, …

Single phase and Overall properties:

Slide 34

value depends on two sets of
pressure, temperature, fraction, phase

value can be scalar, vector (one value for each compound),
matrix (ncompound x ncompound), depending on which property
and which derivative

Composition derivatives: 2 matrices (derivative w.r.t.
each phase)

poorly defined in version 1.0 thermo

example: kvalues, surfaceTension, …

Two-phase properties:

Slide 35

.Dtemperature

(applies to T-dependent, single-phase and two-phase props)

.Dpressure

(applies to P-dependent, single-phase and two-phase props)

.DmolFraction

(applies to single-phase and two-phase props)

.Dmoles

(applies to single-phase and two-phase props)

Property derivatives:

Slide 36

property class

basis dimension:
- whether or not to accept a basis
- how to convert from mole to mass basis
(e.g. density vs volume)

possibly: extensive vs. intensive

property dimension:

(scalar, vector, matrix)

Application must therefore have lists of property information
(lookup by case independent name: calls for hash table)

Material object must know things about a
property:

Slide 37

Interfaces to implement – I. Common Interfaces

ICapeIdentification
Error common interfaces

M
at

er
ia

l O
bj

ec
t

Slide 38

Identification: name should be unique. When copying
a material, give it a new name

Error common interfaces: all errors that occur must
result in a CAPE-OPEN error code. The MO will
implement the appropriate interface for the caller
to get the error details

Notes on Common interfaces

Slide 39

Interfaces to implement – II. Thermo v 1.0

ICapeThermoMaterialObject

M
at

er
ia

l O
bj

ec
t

Slide 40

Interfaces to implement – III. Thermo v 1.1

ICapeThermoMaterial

M
at

er
ia

l O
bj

ec
t

ICapeThermoCompounds
ICapeThermoEquilibriumRoutine
ICapeThermoPhases
ICapeThermoPropertyRoutine
ICapeThermoUniversalConstant

Slide 41

Setting properties:

SetTwoPhasePropSetPropTwo-phase

SetOverallProp
SetSinglePhaseProp

SetPropSpecial, overall,
single-phase

N/A
N/A

SetPropP- and T-
dependent

N/AN/ACompound const.

Version 1.1Version 1.0

Slide 42

Getting properties:

GetTwoPhasePropGetPropTwo-phase

GetOverallProp
GetSinglePhaseProp
CalcAndGetLnPhi

GetPropSpecial, overall,
single-phase

GetPDependentProperty
GetTDependentProperty

GetPropP- and T-
dependent

GetCompoundConstantGetCompone
ntConstant

Compound const.

Version 1.1Version 1.0

Slide 43

Calculating properties:

CalcTwoPhasePropCalcPropTwo-phase

CalcSinglePhaseProp
CalcAndGetLnPhi

CalcPropSingle-phase

GetPDependentProperty
GetTDependentProperty

CalcPropP- and T-
dependent

N/AN/ACompound const.

Version 1.1Version 1.0

Slide 44

Reference state correction:

MO can optionally provide reference state correction
for enthalpy and entropy

Reference values calculated only once

Direction of conversion depends on who is asking
(whether or not property package is asking)

Store values as they are set, do conversion as they
are asked

∑−=
i

irefiPPSIM HxHH ,

Slide 45

Compound and phase mapping

PP compound IDs may differ from
simulation compound IDs

PP phase IDs may differ from simulation phase IDs

This situation is common when mixing property packages

MO should map IDs from simulation to PP before calling
PP

MO should map IDs from PP to simulation when called
by PP

MO thus needs to know who is calling a function

Slide 46

Who’s calling me?

important for reference state correction

important for compound / phase ID mapping

may be useful for error reporting

the one that is calling is the one that currently has control

sufficient to know whether it is the PP or not, so
keep track only of PP having control

when unit operation is active, if MO is inlet stream,
disallow setting properties, calculating properties,
calculating equilibria

Slide 47

More advances topics

choosing implementation platform (native vs .NET)

efficient property and state storage

mapping between version 1.0 and 1.1 thermo
(e.g. version 1.0 UO calling MO with version 1.1 PP)

mapping between version 1.1 and 1.0 thermo
(e.g. version 1.1 UO calling MO with version 1.0 PP)

caching of released MOs for re-use at Duplicate

providing derived properties

error trapping

Slide 48

Pay special attention to data ownership:

Creator of data is not necessarily the owner

The owner must delete the data

IDL: [in], [in, out], [out, retval]

Data that you create and own, you can pre-allocate

Slide 49

