

The use of CAPE-OPEN tools, COCO, Chemsep, in the teaching of undergraduate students at universities in southern Africa.

Klaus Möller

Outline

Teaching at University of Cape Town

- Conceptual idea
- Curriculum change
- Implementation
- Engineering Council accredited design course
- Use of TEA and ChemsepThermo

Teaching at Eduardo Mondlane University, Maputo, Mozambique

Research

- GTL: Custom thermo, Scilab UO
- Carbon black furnace, thermo, Scilab, Gibbs

The future

Conceptual idea: 4 year chemical engineering degree

ASPEN used in 4th year

- licenses too costly
- not possible to share across 4 years (500+ students)
- want to retain ASPEN for final year design
 - problems with application and understanding
 - insufficient time to become skilled at flow sheeting
 - competency hurdles student nightmare

The solution, using COCO to building competence in the curriculum

- introduce flow sheeting in 1st year, add practice to theory
- In 2nd year, use flow sheet tools to add practice to pumping, heat exchange, flash, thermodynamic and distillation phenomena – basic competence
- in 3rd year, combine the skills to build flow sheeting skills and study a process.

structure of the chemical engineering curriculum

what we teach

- Mass balances, single reactions, recycle
- looking at temperatures and energy requirements
 How we use COCO

Teaching:

- o build a flow sheet with single reaction, splitters, recycle
- Competency test on concepts

Practice:

- project...
- alternative routes of methane conversion
- o using fixed conversion reactors, compound splitters, recycle, heaters
- Look at the energy of each process

Teaching COCO to first year students

The audience

- no programming background (poor at spreadsheets)
- no process or unit operation background
- poor practical engineering knowledge

The challenge

- 150 students, hands on, follow me demonstration
- avoid plug and play and copying the flow sheet without thought
- to gain understanding and appreciate the value

The plan

each student entering engineering MUST have a laptop

implementation – 1st year

$$n - C_7 H_{14} \rightleftharpoons C_6 H_{11} C H_3 + H_2$$
, $\Delta H_{rxn}^{400^{\circ}C} = 35673 \text{ J/mol}$

BP = Boiling Point in C at 760mmHg

$$n - C_7 H_{14} \rightleftharpoons C_6 H_{11} C H_3 + H_2$$
, $\Delta H_{rxn}^{400^{\circ}C} = 35673 \text{ J/mol}$

$$n - C_7 H_{14} \rightleftharpoons C_6 H_{11} C H_3 + H_2$$
, $\Delta H_{rxn}^{400^{\circ}C} = 35673 \text{ J/mol}$

$$n - C_7 H_{14} \rightleftharpoons C_6 H_{11} C H_3 + H_2$$
, $\Delta H_{rxn}^{400^{\circ}C} = 35673 \text{ J/mol}$

- Test
- project to carry out

what we teach

- flow systems, heat systems, thermodynamics of processes
- recycle systems, energy balances,
- single reaction systems, separation systems

How we use COCO/chemsep

- learn to build a property pack
- learn to build a reaction pack
- flash calculations
- Gibbs reactor
- fixed conversion reactor
- heat of reaction
- Distillation using chemsep, McCabe-Thiele, stage efficiency, ...

Vinyl Chloride Monomer project

$$C_2H_4 + Cl_2 \longrightarrow C_2H_4Cl_2$$
 (direct chlorination)
$$C_2H_4 + 2 HCl + \frac{1}{2} O_2 \longrightarrow C_2H_4Cl_2 + H_2O$$
 (oxy-chlorination)
$$C_2H_4Cl_2 \longrightarrow C_2H_3Cl + HCl$$
 (EDC decomposition)

Heat of reaction Heat duties distillation

what we teach

- solid-fluid systems, mass transfer
- adiabatic reactors, phase thermodynamics, complex separations
- process control, dynamics

How we use COCO

- Multiple reactions, pressure drop, catalyst material, adiabatic
- Multi-stage reactors
- Flow sheets with recycle and make-up mixer
- Flow sheets with distillation sequences

$C_6H_5CH_2CH_3 \rightleftharpoons C_6H_5CHCH_2 + H_2, \quad \Delta H_R^{298} = 117.6 \text{ kJ/mol}$ Styrene monomer plant $C_6H_5CH_2CH_3 \rightarrow C_6H_6 + C_2H_4, \qquad \Delta H_R^{298} = 105.4 \, \text{kJ/mol}$ $C_6H_5CH_2CH_3 + H_2 \rightarrow C_6H_5CH_3 + CH_4$, $\Delta H_R^{298} = 105.4 \text{ kJ/mol}$ $2H_2O + C_2H_4 \rightarrow 2CO + 4H_2,$ $\Delta H_R^{298} = -54.6 \text{ kJ/mol}$ $H_2O + CH_4 \rightarrow CO + 3H_2,$ $\Delta H_R^{298} = 210.2 \text{ kJ/mol}$ $H_2O + CO \rightarrow CO_2 + H_2$, $\Delta H_R^{298} = -41.2 \, kJ/mol$ heat exchanger exchanger exchanger ethylbenzene reactor 1 reactor 2 HP steam mixer mixer feed furnace 1 LP steam furnace 2 light gases stream splitter light gases LP steam condensei light-gas toluene, benzene splitter water-organic splitter water return column 1 column 2 partial condenser styrene ethylbenzene recycle

(1)

(2)

(3)

(4)(5)

(6)

COCO/Chemsep a great success Student development, ASPEN preparation

1st year:

- explore chemical engineering calculations
- Students highly motivated,
- COCO easily applied although the understanding is lacking
 2nd year:
- develop own flowsheet
- better physical undertanding of flow systems, Pressure, temperature, valves, pumps,

3rd year:

- complex reaction and separations system design
- recycle and heat integration
- economics and "optimisation"
- concepts and applications make students ASPEN ready

COCO/Chemsep a great success Student development, ASPEN preparation

4th year:

- no need for ASPEN training
- No need for unit operation development
- transition, design peparation and design project no longer limited by ASPEN competency issues.

SUCCESS!!!!

3rd years at work

University of Eduardo Mondlane, Maputo, Mozambique Chemical Engineering Masters programme teaching

This is part of a SASOL sponsored MSc programme on petroleum refining

- The audience: Chemical engineering and geological engineering
- The challenge:
 - They are not well trained in computer usage
 - They have very old poorly maintained laptops
 - Home language is Portuguese
 - o small classes − 10-15 (lucky)
 - poor facilities
 - o course runs entirely paperless, wifi!!!!!!

How it runs

- 2 week intense programme (with much hand waving)
- about 8 hours a day of lectures and one-on-one contact
- 1 test, 2 projects

University of Eduardo Mondlane, Maputo, Mozambique Chemical Engineering Masters programme teaching

The projects

The design of a simplified Terephthalic Acid (TPA) Plant

The design of a syngas to methanol plant

University of Eduardo Mondlane, Maputo, Mozambique Chemical Engineering Masters programme teaching

Has it worked

- has run in 2017/2018
- First group spent 1 month on SASOL secunda plant
- Are using COCO/ASPEN to carry out some of the analysis
- Feedback I have from engineers on the plant
 - students very competent with regard plant operations
 - Students have good simulation skills

YES, it has

Other initiatives using the same model not yet successful

 Universities with chemical engineering in Kenya and Tanzania

Research

Conversion of Olefins to distillates (PetroSA)

- Multi-phase adiabatic process model
- H2, C1-C40, olefins and parafins, with linear, mono-branched, di-branched and tri-branched species, thousands of reactions including reversibility
- custom thermo and VLE engine
- seconds-few minutes on laptop
- Needs a wrapper for ASPEN

Reactor Volume

COD CN diesel

COD CN heavy

COD CN LPG

COD CN gasoline

temperature, [C]

temperature, [C]

psi=V/F

Research

Carbon black furnace model

Research

Carbon black furnace model

Summary Remarks

Teaching with Cape Open/COCO/Chemsep

- great success
- Students also use TEA, COPP, ScilabUO

Research

- On Going
- Bigger challenges

Future

- Tools and knowledge great asset to resource limited countries
- More teaching, more usage and more Cape open based solutions needed

