Pyrolysis in CoCo flowsheeting

Robbie Venderbosch

btg

biomass technology group

Your partner in bioenergy

- BTG Biomass Technology Group B.V.
- Pyrolysis
- Model pyrolysis
- Future perspectives on our flow sheeting
- 'Take home' messages

BTG Biomass Technology Group BV

Research & Technology Development RTD - Thermochemical Biomass Supply of products (kg's – tonnes) conversion **Pyrolysis oil** Fast Pyrolysis process Stabilized & upgraded Oil Pyrolysis oil conditioning & analysis Oil fractions (e.g. Sugar syrup, Lignin) **Pyrolysis oil applications** Torrefied biomass / biochar Energy **Contract Research** Biofuels **Chemicals & Materials** Feedstock testing

- **Staged Catalytic Gasification**
- **Torrefaction & Carbonisation**
- High Pressure Processing
 - **Reforming in Supercritical water**
 - Liquid Phase Reforming

- Processes under elevated pressure;
- Feedstock & Product Analysis

Design & supply of (test) units

- Conceptual & basic designs
- RTD test units for biomass conversion

Enschede, The Netherlands

Fast Pyrolysis

- Thermal cracking of organic material in absence of oxygen
- Main product: liquid bio-oil (70% yield)
- Other products: gas and char
- Typical Process conditions
 - T = 400 600 °C
 - P = atmospheric
 - $\tau_{gas} \sim$ seconds

Pyrolysis liquids as an intermediate between biomass and end-users (i.e. refineries)

Fast Pyrolysis – development timeline

	I I	
2018	Roll-out	Co-production of FPBO, process steam and electricity 3 years operational experience: production and use
2015	Rol	Start-up Empyro plant & Process steam boiler at FrieslandCampina
2014 2013	↑	Start construction 120 t/d Empyro plant in Hengelo (NL) Long-term FPBO supply contract signed
2009	ent	Establishment of Empyro BV to demonstrate FP technolog
2007	development	Establishment of BTG Bioliquids BV to commercialize BTG Fast Pyrolysis technology
2005	de	Delivery of 50 t/d FP-plant to Malaysia
2004	↑↓	Large-scale co-firing test at Harculo Power Plant
1998	-	Start-up of 200 kg/hr FP pilot plant in BTG Laboratory
1994	research	Delivery semi-continous test unit (50 kg/hr) to Shenyang (China)
1993	5	Knowledge transferred from UT to BTG
1989 1987	Ļ	Rotating cone reactor 'invented' at University of Twente (UT)
		© 2017

Empyro efficiency (MW_{th})

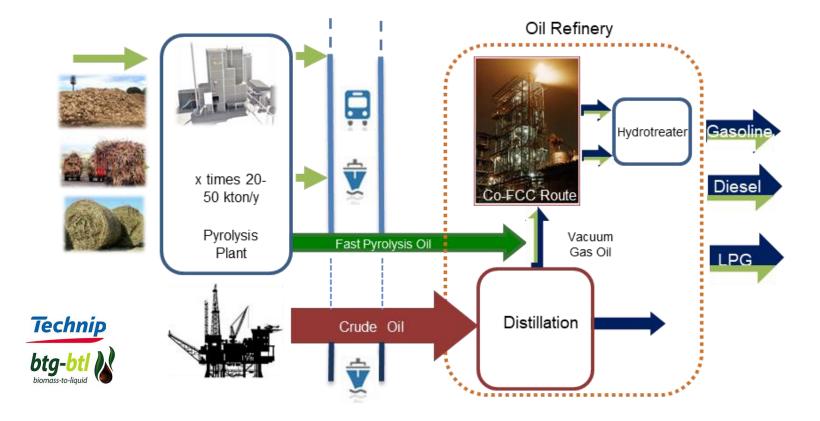
biomass technology group

Pyrocell commences production 😏 🖪 🛅 😰

MON, SEP 20, 2021 13:35 CET

Production is now underway at Pyrocell's groundbreaking plant in Gävle. The new and pioneering plant converts sawdust into bio-oil.

Pyrocell, which is jointly owned by Setra and Preem, was formed in 2018 based on the business concept of producing bio-oil from sawdust. Production at the groundbreaking plant is now underway – and is the country's first pyrolysis oil plant for biofuel.


"The commence of production at Pyrocell signals another concrete step in our transition and in our work to achieve large-scale renewable production," says Magnus Heimburg, CEO of Preem.

Pyrocell's plant is located next to Setra Kastet sawmill in Gävle. There, sawdust, which is a residual product in Setra's industrial process, is converted into non-fossil pyrolysis oil. The pyrolysis oil is then refined into renewable diesel and petrol at Preem's refinery in Lysekil.

"Pyrocell is a unique industrial investment that enables a sustainable value chain from forest to tank," says Pontus Friberg, acting Chairperson of Pyrocell. "We are replacing fossil fuels and contributing to an increased proportion of renewables in fuels that result in lower carbon dioxide emissions."

The plant will produce around 25,000 tons of non-fossil pyrolysis oil per year, corresponding to the annual fuel consumption of 15,000 passenger cars.

Why flowsheeting

Flowsheeting:

Provide facts / arguments Transparency / retrace data Collect data Data management Data transfer Understanding Optimisation

CoCo:

Open resource (EU projects) Impact!

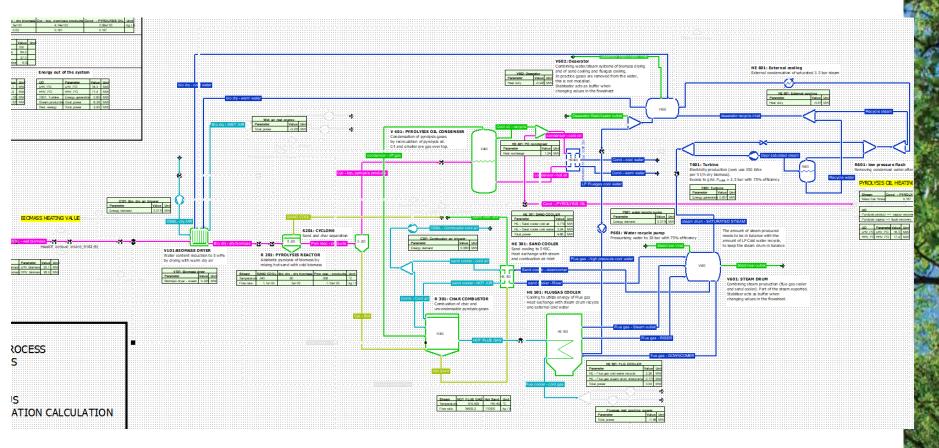
Process Design and Economics for the Conversion of Lignocellulosic Biomass to Hydrocarbon Fuels

Fast Pyrolysis and Hydrotreating Bio-oil Pathway

November 2013

Susanne Jones, Pimphan Meyer, Lesley Snowden-Swan, Asanga Padmaperuma Pacific Northwest National Laboratory

Eric Tan, Abhijit Dutta National Renewable Energy Laboratory


Jacob Jacobson, Kara Cafferty Idaho National Laboratory

PNNL-23053 NREL/TP-5100-61178

Prepared for the U.S. Department of Energy Bioenergy Technologies Office

Model overview

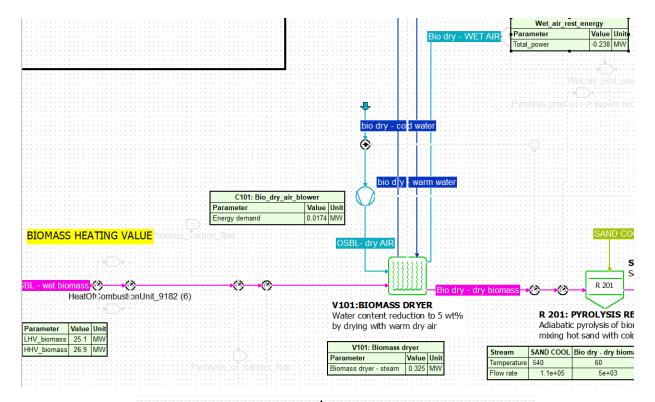
https://www.cocosimulator.org/down.php?dl=BTG_pyrolysis.fsd

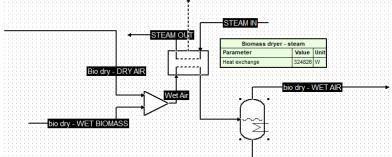
Overview model

- Main assumptions
 - Model compounds
 - Conversion reactors
 - No pressure drop
 - Slightly over pressure

Compound group Water soluble Acids Alcohols Ketones Aldehydes Guaiacols Low MW sugar High MW sugar Water Insouluble Low MW Lignin A Low MW Lignin B Extractives High MW Lignin A High MW Lignin B Nitrogen compounds Sulfur compounds

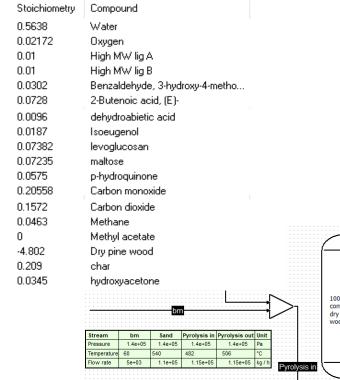
Model compound

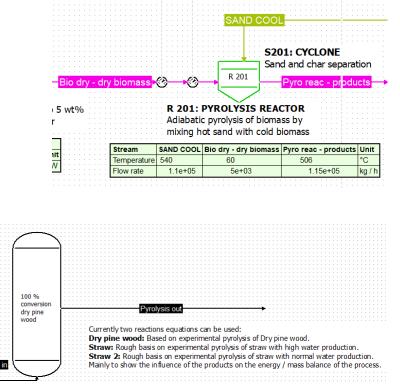

- Crotonic acid 1,4-benzenediol Hydroxyacetone 3-metoxy-4-hydroxybenzaldehyde Isoeugenol Levoglucosan Cellbiose
- Dimethoxy stillbene Dibenzofurane Dehydroabietic acid C20H26O C21H26O 2,4,6-trimethylpyridine Dibenzothiophene


Figure 1: Pyrolysis model compounds (+ 'wood')

Detailed sections – biomass dryer

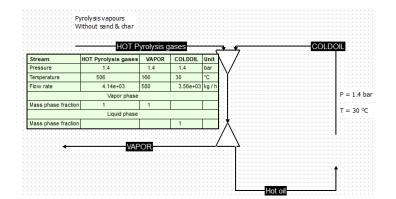
• 5 wt% water in biomass fed, controlled by air flow.

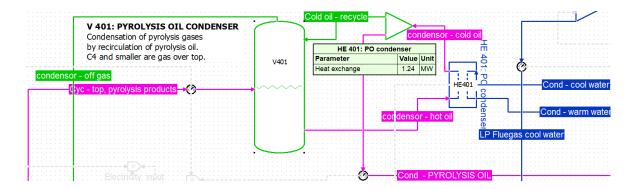




Detailed sections – pyrolysis reactor

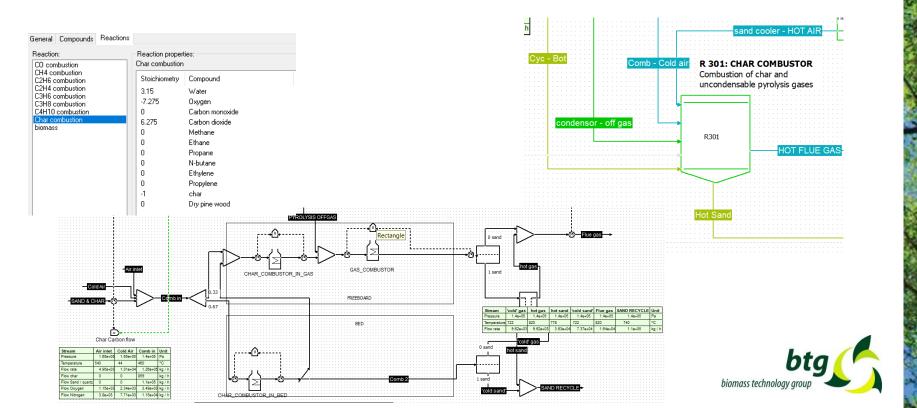
- reaction packages obtained with (external) excel solver.
- 20 : 1 ratio sand : biomass
- ~Slightly exothermic behaviour predicted

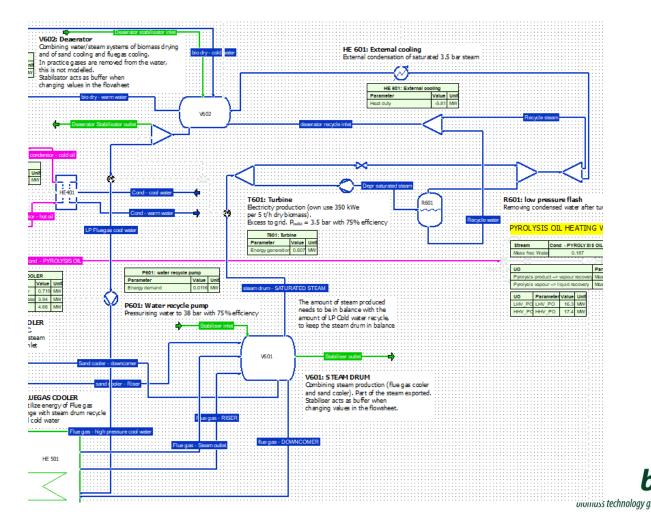




Detailed sections - condenser

- <C₄ as gas over top; Quenching with cold oil.
- Temperatures nicely predicted




Detailed sections – combustor reactor

- Char and light gases combustion
- Oxygen transported to board
- Slight heat exchange between bed and board
 - T_{fluegas} and T_{sand} accurately predicted

Detailed sections – Steam system

- Steam drum; Turbine; External cooling; Deaerator
- All pressure / temperatures nicely predicted

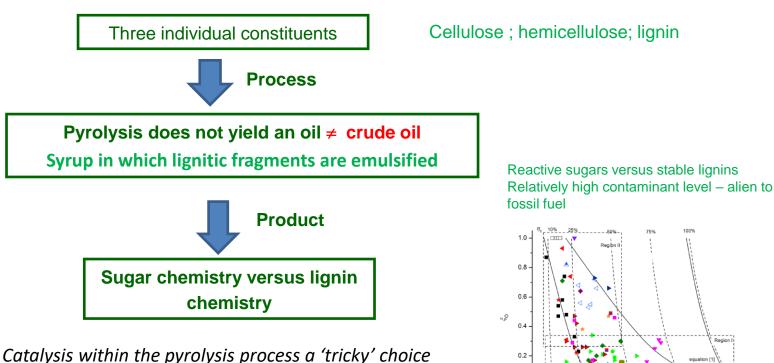
- Checked over complete flowsheet and unit operations.
- Intrinsicly correct due to mass and atom check in program.
- Carbon Efficiency.
- Mass and water flow.

Overview of the mass and water content	Stream	OSBL - wet biomass	Bio dry -	dry bion	nass	Cyc - top, pyrolysis products	Cond - PYROLYSIS OIL	Unit	1		
of the main streams in the system.	Flow rate	5.28e+03	3e+03 5e+03		4.14e+03	3.56e+03	kg / I	n i i i			
	Mass frac Water	0.1	0.0	05		0.161	0.187		1:::		
· · · · · · · · · · · · · · · · · · ·											::
									: : : :	: : :	::
Overview of the carbon flow for the main process	UO Biomass carbon	Parameter flow Inlet Carbon		Value	Unit						
Overview of the carbon flow for the main process streams. Carbon flow is normalised towards the carbon in the feed stream	Biomass_carbon_			Value 100 64.2	Unit						
streams. Carbon flow is normalised towards the	Biomass_carbon_ Pyrolysis_oil_carl	_flow Inlet_Carbon	_carbon	100	Unit						

Energy Balance

- Energy internally intrinsically correct.
- Visualised energy flows for whole model and unit operations.
 - Checked with build in LHV/HHV calculator build in.
 - 0.1 0.3% errors

Energy into the system


Energy out of the system

UO	Parameter	Value	Unit	
LHV_biomass	LHV_biomass	25.1	MW	
HHV Biomass	HHV_biomass	26.9	MW	
Electricity_input	Total_power	0.109	MW	
V101: Biomass dryer	Biomass dryer - steam	0.325	MW	

UO	Parameter	Value	Unit
LHV_PO	LHV_PO	16.3	MW
HHV_PO	HHV_PO	17.4	MW
T601: Turbine	Energy generation	0.607	MW
Steam production	Total_power	6.38	MW
Rest_energy	Total_power	2.95	MW

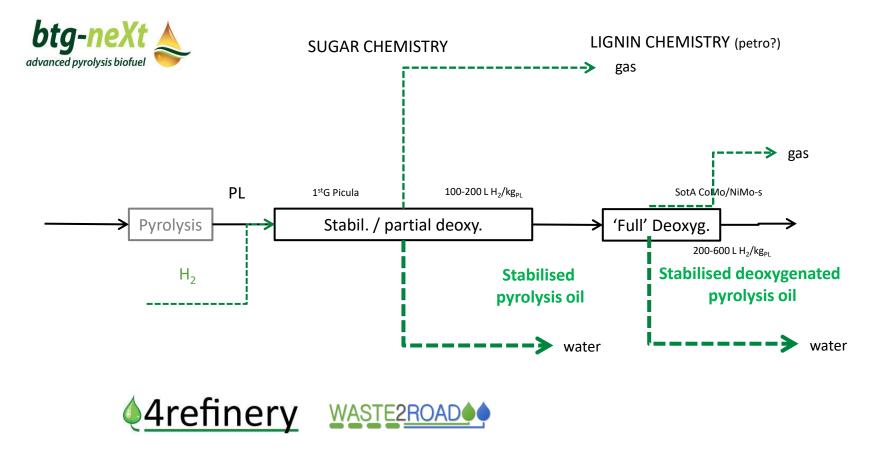
Future perspectives wrt CoCo flowsheeting

cutarysis within the pyrolysis process a tricky choice

Hydrotreating pyrolysis liquids

10.1002/cssc.201500115

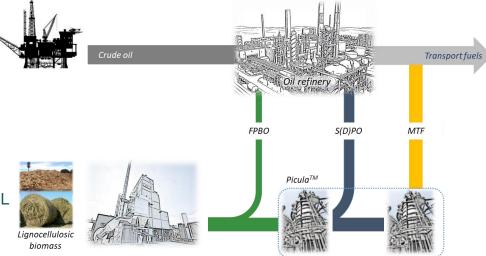
0.5


0.0

equation [5

Liquid conversion: sugar chemistry versus lignin chemistry

Advanced biofuels from pyrolysis liquids by refinery integration


Options to produce a drop-in fuel

1. Co-feed of PL with VGO in FCC unit

- Extensive testing by Petrobras (and others)
- To be demonstrated full-scale by Preem (2021)
- Max co-feed around 5-10 wt%

2. Co-feed of treated PL with VGO in FCC unit

- Lab- and pilot testing
- Higher co-feed ratio's possible (20 30 wt%)
- Less impact on product slate compared to crude PL
- 3. Stand-alone upgrading of PL to drop-in
- Lab- and pilot testing
- Multi-step hydrotreating process
- Product (MTF) is fully miscible with fossil fuels

Source: BTG Bioliquids BV

https://doi.org/10.1016/j.fuel.2016.10.032; 10.1021/acs.iecr.5b03008

PL = Fast Pyrolysis Bio-Oil S(D)PO = Stabilized (Deoxygenated) Pyrolysis Oil MTF = Mixed Transportation Fuel

Challenges

- Fluid catalytic cracking models custom made operation
 - Aspen / Hysis: (excel) add-on
 - rigorous HYSYS models for modelling the FCC step do not take into account oxygen containing feedstocks
 - Alternatively experimental modelling software. Fitting models to obtain data sets requires extensive testing (with variables as feedstock, process conditions and product yields)

Development reactor tool through integration with other open resource applications (PythonUnitOperations)

- FCC refinery approach
- Electrochemical transformations (EBIO / Sintef)

Take-home messages

- COFE sheeting in this open resource application straightforward and very useful (European commission / Saxion / Twente University / VTT ..)
- Development of models in other applications in biofuel arena ongoing (ethanol / lignin conversion /...)
- Efficient use in quick and dirty screening of specific pathways / routes
- unique plus; open resource; easy access; relatively intuitive approach
- Dynamic simulations?
- Integration with other open resource applications: PythonUnitOperation

4REFINERY (GA 727531); Waste2Road (GA 818120) Jasper van Baten (also to solve any flaws / bugs during the last 5 years)

Rose van Haeringen Thomas Kreuger Sjors de Groot Sybe Tabak

Questions?

Contact information

Visiting address Josink Esweg 34 7545 PN, Enschede The Netherlands

+31 (0)53 486 1186 +31 (0)53 786 1180 Postal address P.O. Box 835 7500 AV, Enschede The Netherlands

www.btgworld.com office@btgworld.com

biomass technology group

Your partner in bioenergy