An introduction to

Jasper van Baten, AmsterCHEM

Introduction

- > Overview of COCO software components
- > Overview of how this fits in to CAPE-OPEN framework
- Some details on implemented algorithms
- Interoperability demonstration
- > Benefits of having COCO on *your* computer

CAPE-OPEN to CAPE-OPEN (COCO):

Simulation environment (COFE)

Thermodynamic property package (TEA)

Collection of unit operations (COUSCOUS)

Reaction package (CORN)

COFE: CAPE-OPEN Flowsheeting Environment

COFE: CAPE-OPEN Flowsheeting Environment

- > Breaking recycles by automatic tearing
- Solving recycles by hybrid Newton / Wegstein approach, using reparameterization
- Support for multiple material types, with selection for thermo and sub-set of compounds
- Material, energy and information streams

TEA: Thermodynamics for Engineering Applications

- Pure compound data library (extendible, or use DIPPR)
- 100+ Property calculation methods (25+ different properties)
- Property derivatives
- Support of external property calculation routines and external equilibrium servers

TEA: Thermodynamics for Engineering Applications

VLE equilibrium calculations

- Large diversity of supported flash specifications
- Inside-out approach
- Post-checking of solution (since version 1.09)
- Back-up full Newton approach

COUSCOUS: Simple unit operations

tailor-made engineering software solutions

🙀 COCO Simulation environment Print Options Back Hide Contents Index **COFE: OLE and Excel Enthalpy** coco ⊕ ☐ COFE □ 🦱 TEA Ideal ■ Microsoft Excel - Flowsheet in COFE.xlt Property packs and property pack (<u>File Edit Insert Flowsheet View Window H</u>elp In this model the enthalpy is computed from the ideal gas **→** .:; .:; **→** | ⊕ | ⊞ | 🍇 🗎 🖺 👃 🕨 🗸 default Equations of state Activity Bubble and dew points $H_{id}^{V} = \sum_{i} X_{i} \left(H_{i,T_{ref}} + \int_{T_{ref}}^{T} C_{p,i} dT \right)$ **EXCEL** 🖹 Density, volume and compressi Enthalpy Entropy Fugacity For liquids, the latent heat of vaporization is subtracted from the ideal Gibbs free energy gas contribution: Heat capacity Heat of vaporization K-values $H_{id}^{L} = H_{id}^{V} - \sum X_{i} \Delta H_{vap,i}$ Molecular weight Surface tension Thermal conductivity Excess Vapor pressure Viscosity Symbols This model includes the ideal enthalpy as above. In addition to that, Equilibrium Calculations excess enthalpy is included: Property pack options $H = H_{id} + H_{ex}$ ⊕ 🛅 CORN ⊕ 🛅 ChemSep Mixer :101 ⊕ CosmoTherm **EOS** ⊕ Utility applications Disclaimer This model includes the ideal vapor enthalpy as above. In addition to that, the temperature derivative of the fugacity coefficients from the selected equation of state is substracted from the ideal part: $H = H_{id}^{V} - RT^{2} \sum_{i} X_{i} \frac{\partial \ln(\phi_{i})}{\partial T}$ Compressor 102 **ONLINE HELP** Ready

COFE: OLE and Excel

COCO: CAPE-OPEN interface support

- ➤ Full support for thermodynamic standard versions 1.0 and 1.1 in all components
- Unit operation sockets & plugs (steady state)
- > Reaction package sockets & plugs
- > Full support for all COSE interfaces
- All common interfaces (identification, error handling, utilities, parameters with dimensionality, persistence, ...)

OFE - [h53J.fsd] _ B × _ I 원 × File Edit Flowsheet Plot View Window Help Compressor_471: Pump_470 fumace: ChemSepUO_417 :ChemSepUO_416 ChemSepUO_382 message: Warning: bubble point calculation failed: trivial solution for bubble point temperature (last message repeated 1 time)
Solve finished
Saved h53J.fsd

COCO stand-alone

Three-phase AspenPlus flash using TEA + Cosmo*Therm*

Pro/II showing internal and COUSCOUS mixer

Pro/II using TEA

IFP/TOTAL TINA pipe model running in COFE

Why COCO?

- COCO integrates a useful set of thermodynamic property calculations, compound information and unit operation models
- COCO has been awarded the CO-LaN CAPE-OPEN award 2006
- COCO is widely regarded as the CAPE-OPEN interoperability testing platform
- COCO is available free of charge
- COCO is used world-wide

COCO downloads

COCO downloads per capita

- Download COCO: http://www.cocosimulator.org/ (or ask for a copy during the workshop)
- > Contact amsterchem for CAPE-OPEN consulting
- Interoperability testing program: http://www.cocosimulator.org/index_compliancy.html

Acknowledgements:

- Richard Baur
- ChemSep: Ross Taylor, Harry Kooijman
- Cosmo*THERM*: Frank Eckert
- Michel Pons

Many Thanks for CAPE OPEN testing licenses:

AspenTech: AspenPlus 2004.1

CosmoLogic: Cosmotherm C21

HTRI: Xchanger Suite 5.0

PSE: gPROMS 3.0.3

Simsci-Esscor: PRO/II 8.1

TUV-NEL: PPDS v4.1.0.0

VMG: VMGThermo 5.0

