
1

Good morning; my name is Jasper van Baten. I am an independent software 
consultant from AmsterCHEM, and the principle author of the COCO steady state 
flowsheet simulation software. COCO is shipped with the separation process 
software ChemSep, by Ross Taylor and Harry Kooijman; some of you may be 
familiair with this software. Today’s presentation will be about flexibility of custom 
modelling in steady state flowsheeting. Such flexibility is handy for implementation 
of custom models in research, but the focus today is somewhat more on teaching 
purposes.



2

Steady state flowsheets are used for process design and process analysis. Several 
commercial packages are available. All of them operate on the same principles. A 
complete process flowsheet, or a part thereof, is represented by a graph in which the 
streams are drawn between blocks that represent process equipment, such as 
reactors, separation columns, pumps, etc. The principle is illustrated here. The unit 
operation is connected to one or more feed streams, and one or more product 
streams. The feed streams may come from upstream unit operations, and the 
products may be feeds to upstream unit operations. 

Each simulation environment comes with a number of pre-defined unit operations; 
each simulation environment will have its own models for compressors, reactors, 
flash drums, and what not. To the end-user, what happens inside such a unit 
operation is not always clear; the unit operation operates as a black-box. Even if 
well-documented, the end-user can generally not modify the equations that are 
solved. In addition, it is impossible to capture all possible models for process 
equipment in standard models, and even extensive sets of standard models have 
their limitations.

Especially in teaching this is not uncommon. For example, typically during a 
chemical engineering course, the parallel between a plug flow reactor and tanks-in-
series are drawn. The plug flow reactor will typically be part of the standard set of 
models, the tanks-in-series model is generally not. Simple heat exchanger models 
are generally available, but it is hard to come up with a standard model for the most 
common heat exchanger of the shell-and-tube type. All one needs to do to realize 



that the possibility of different models is almost endless, is to open a chemical engineering 
text book and look at the variety of models and equipment presented. In this presentation, we 
will use a simple membrane separator for example. Standard models are generally not 
available in simulation software, because of the lack of standard representations of available 
data on performance of such devices.

So – for teaching purposes it would be handy to have a convenient way to enter text book 
equations that describe process equipment. All simulation environments are of course 
equipped with a mechanism to enter custom models. The classic approach is that the user has 
to write some FORTRAN code that is linked along with the simulator code. Writing such 
code requires programming skills, and is typically specific for the simulation environment at 
hand. If you want to use the same model in a different simulation environment, you will need 
to go through the exercise of writing such code again; not very re-usable and not very user 
friendly.

The re-usability can however be resolved. An open software standard exists that allows for 
exchange of chemical engineering and process models and thermodynamic servers. It is 
called CAPE-OPEN. Models that adhere to the CAPE-OPEN standard can be re-used in 
different simulation environments. Today we will present three CAPE-OPEN based custom 
modeling solutions that the end-user may be more familiar with. One can enter the model 
equations in Microsoft Excel, in Matlab, or – in case a Matlab license is not available – in 
Scilab, which is similar to Matlab. We will present these solutions using a simple step-by-step 
example. The simulation environment we use is COCO, and for separations we will depend 
on ChemSep.

2



3

Thus, after this short introduction, the presenation will proceed as follows. First the 
example problem will be introduced. Then we show how to tackle the problem by 
typing the equations in Scilab script; we will quickly show how to incorporate this 
into the flowsheet and that it actually leads to a solution. Next, we will show how to 
do it using Excel instead of Scilab. The Matlab solution will not be shown; it is very 
similar to the Scilab solution.



4

The problem to be solved for this example involves the separation of water and 
ethanol. At about 90% ethanol, this system has an azeotrope, so direct separation 
using a single distillation column is not possible. We can however obtain the desired 
separation specifications if we take the columns top-product and finish its 
separation using a membrane that will selectively allow methanol to pass. The 
nearly pure ethanol is then the final product, and the mixture of water and ethanol 
will be fed back to the distillation column.



5

The membrane model is very simple: the separation is defined by two parameters: 
the separation factor alpha, which defines the product purity, and the membrane cut 
theta, which defines the amount of flow passing through the membrane. This model 
has been selected for its simplicity so that the demonstration fits in the scope of this 
presentation. This simplicity does not reflect on the possibility of the modelling 
tools; the equations there are not limited by complexity, as long as you can solve 
them with the tools at hand. For Excel for example this means that as long as you 
can get the Excel solver to solve your equations, you can make the equations as 
complex as you want.



6

Also the setup of the problem we keep simple. We start the COFE flowsheet 
simulator, and start a new flowsheet document. To insert thermo, we create a new 
property package, add the compounds water and ethanol, and choose the default 
NRTL model set. We insert the feed into the flowsheet, and specify the feed 
conditions. We insert a new ChemSep column, and accept all its defaults for simple 
distillation. We connect the feed to the column and we insert the distillate and 
bottom product streams that we also connect to the column.



7

For our custom model with Scilab, we enter a new Scilab Unit Operation. Scilab is a 
generic script based modelling tool, much like Matlab. It knows nothing of chemical 
engineering per se, so some functionality has been added to make it operate as a unit 
operation. This functionality includes the ability to access thermodynamic 
calculations (property calculations, phase equilibrium calculations). But also we 
need to tell it something about the ports and parameters we want to expose. Ports 
are the connection points for streams; only after creation of ports will the user be 
able to connect streams to the Scilab Unit Operation. A GUI is provided for this, so 
we double click to edit the unit. On the Ports tab, we create 1 feed named Feed, and 
2 products, named Permeate and Retentate. We see that the product streams have 
indices 1 and 2, which we can use from the Scilab script to access the products.



8

Our model also has two parameters: the separation factor and the permeate cut, as 
shown on a previous slide. These we can enter on the Parameters tab.



9

All that remains to be done is enter the script that calculates the unit. The model has 
a simple analytic solution, but we will not use it here. The reason we are not using it 
is because we want to demonstrate that we can use the solvers built-in to the generic 
modelling tools (in this case Scilab) to solve equations for us; also integration tools 
are generally available. 

The script is directly entered into the Scilab Unit Operation, and can be tested at 
will – presuming that the feeds and products to the units have been connected. We 
have created the ports, so we can connect the streams at this moment, and we 
proceed to enter the script.

For convenience, we define the indices to water and ethanol. We can do this in a 
more dynamic way by asking for the list of compounds, but for demonstration 
purposes this will suffice.

We then initialize the script by assigning the feed values and parameter values to 
local variables.

The solution for the product flows is explicit, and requires solving the equation for 
permeation cut theta, as shown here in the bottom.



10

We then define two functions; the first one, GetCompositions, calculates the 
compositions of the permeate and retentate products, given the ethanol composition 
in the permeate, which we will use as an iteration variable. This function is based on 
the fact that the mole fractions of both products add up to unity. We can then use 
either the ethanol or water component balance to close the equations; the ethanol 
balance is used here.

The second function, CompositionFunction, is the equation we solve: we iterate 
over the ethanol composition in the permeate; the other compositions follow from 
the GetCompositions function. This function returns the actual value of the 
separation factor minus the specified value. Hence, the problem is solved in for a 
value of permeate ethanol mole fraction XPE for which this function returns zero.



11

To finish of, we use the Scilab function fsolve to solve the CompositionFunction 
defined on the previous slide to be zero, by varying the permeate ethanol mole 
fraction with an initial guess of 0.999. The solution value of the permeate ethanol 
mole fraction gives us all compositions, given the GetCompositions function on the 
previous slide. We then define the products, using temperature, pressure and the 
calculated flows and compositions.

We always need to specify flows and compositions for a product. Instead of pressure 
and temperature, we may however choose other variables to fix the phase 
equililbrium; for example pressure and enthalpy is a common combination for 
adiabatic units or units with a specified heat duty. 

This particular example does not use any thermodynamic calculations. Such 
calculations are however available, and the extended abstract provides a simple 
example. The extended abstract is on the proceedings CD, on the cocosimulator web 
site, or available on request.



12

We have seen that we can enter our equations without any significant programming. 
Two scripted functions have been provided, in order to use the Scilab solver. As 
mentioned, the problem has a simple analytic solution; the script would have fitted 
on a single slide if we would have used that. 

With the ports, the parameters and the script defined, our unit is complete. To meet 
the bottom product specification, we change the number of stages in the column to 
20, move the feed stage to stage 17. We can run the test problem, and inspect the 
concentrations of the Retentate stream. We see that stage 6 is a good place to feed 
the retentate back into the column. We solve the flowsheet, and notice that we easily 
have obtained all our problem target specifications.



13

Even though in Scilab, we could pretty much enter the equation in a functional form 
and be done, some users may prefer to enter the equations in Excel. The principles 
that hold are similar. We remove the Scilab unit operation from our example 
flowsheet, and replace it by a new empty Excel Unit Operation. If we edit this, 
Excel appears. A number of worksheets are present in the Excel workbook that pops 
up. The meanings of these slides are specific to the unit operation, and all we need 
to do is fill them out. We start on the feeds sheet by defining our Feed. It has the 
name; Feed.

As soon as we connect the feed, the values in the feed stream will appear in this 
sheet. 



14

Similarly, on the products sheet, we define our product ports, they are named 
Permeate and Retentate.

The values in this sheet we need to provide by entering our calculations. We will 
provide a formula for temperature, pressure, flows and mole fractions of both the 
product streams.



15

On the parameters sheet, we define the parameters for separation factor and permate 
cut. For use in equations, I have added a name to each of the values; we can refer to 
the separation factor as alpha, and to the permeate cut as theta. If the flowsheet user 
changes the parameter values, the values in this sheet will automatically be updated.



16

After connecting the ports, the feed sheet looks like these: not only are the 
compounds known at this point, but also all feed values have been filled out. We can 
refer to these values in our calculations.



17

The calculations are analogous to what we had done in Scilab. The flows are 
calculated explicitly in the rows 1 and 2.

In row 4 we define the initial guess for our solver problem. The actual value being 
solved for is in row 5. Rows 6, 7 and 8 list the remainder of the product 
compositions as a function of the iteration variable.

Based on these values, we can calculate the separation factor, as on row 10. The 
error is given by calculated and specified separation factor, and we set up the Excel 
solver to change the iteration variable on row 5 for the error in row 11 to be zero.

We can save the solver scenario, and on the control sheet we can tell the Excel Unit 
Operation to use this solver scenario when solving the unit; we can also state that 
the initial guess should be taken from row 4.

For each Excel Unit Operation, multiple solver scenarios can be specified that way, 
and they will be solved in the order in which they are specified.



18

Now all that remains, is to refer to the solution on the products page. 

The pressure and temperature for the products directly refer to the feed sheet. 

The flows and compositions of the products refer to the solution of the equations we 
have just entered.

This is all that is required in Excel to define our unit operation.



19

We have identified the need for custom unit operation models in flowsheeting; a 
text book model has been picked for demonstration purposes with the focus on 
teaching.

We do not want to be bothered by programming; essentially we want to only enter 
the model equations.

We do not want to write our own solvers; we want to re-use the solvers at hand.

We have presented a solution methodology that uses Scilab. The Matlab 
methodology is not presented here, as to avoid repetition. The Scilab example 
translated 1:1 to the Matlab environment. We can also use Excel, which has a bit of 
a different approach to enter the equations.

The solution approaches are implemented in a CAPE-OPEN context, and can 
therefore be reused in simulation environments with CAPE-OPEN support.

We have shown the application of the presented solution methodologies in the 
COCO simulator, using ChemSep to model the distillation column.

We believe that the demonstrated approach is very suitable for teaching purposes 
and for research.



20

COCO is freely available for download from cocosimulator.org. This includes the 
free LITE version of ChemSep. The commercial version has been avaiable to 
CACHE members for more than 15 years already. It is available from chemsep.com.

The CAPE-OPEN standards are free and open, and available from the CAPE-OPEN 
Laboratories Network: colan.org.

The Matlab, Scilab and Excel Unit Operations presented here are free for non-
commercial use, and available from Amsterchem.com.



21

Finally, Jasper van Baten would like to thank all companies that generously 
provided software and licenses to AmsterCHEM for CAPE-OPEN development and 
testing.


