Cape Open Overhead in Distillation Modeling

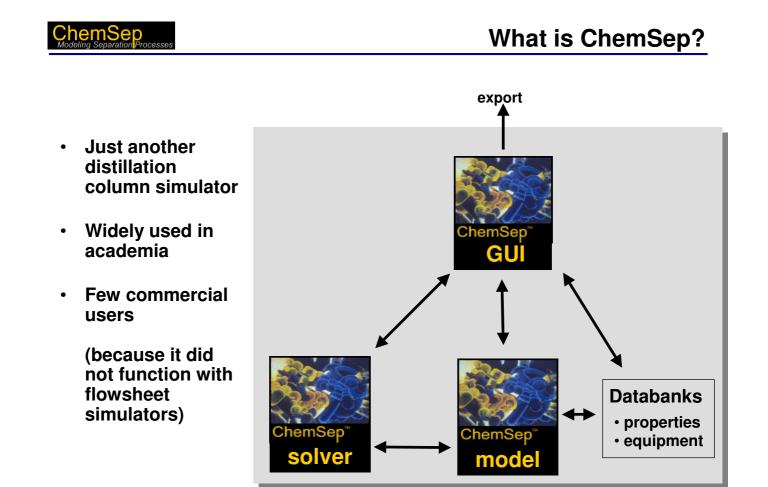
Ross Taylor Harry Kooijman Jasper van Baten

Acknowledgements

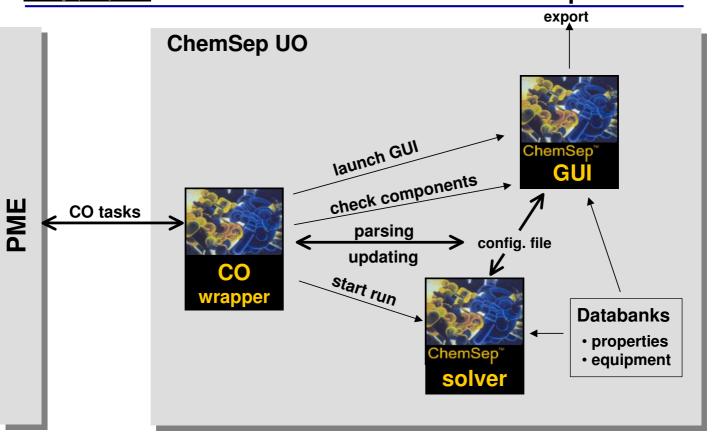
Michael Gobler – Aspen Tech

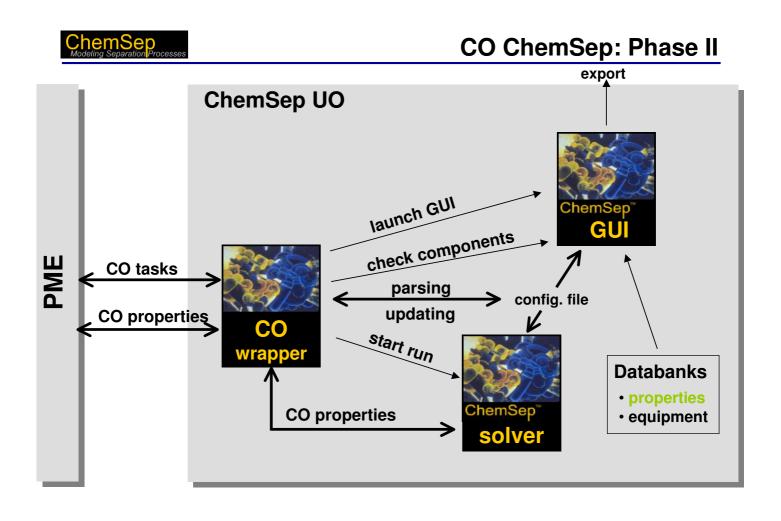
CAPE OPEN will not succeed because run time will be too high

CObservation


- It is reported that 70-90% of simulation time is taken up by physical property calculations.
- CO property calls should have a major impact on run time.
- By how much?

And does it matter?


Measuring the Overhead of Cape-Open -Check with different:


- Process Model Environments (PME's)
 - Aspen-Plus
 - COFE (flowsheeter of COCO)
- Process Model Components (PMC's)
 - ChemSep Flash
 - ChemSep Column
- Process Model Libraries (PML's)
 - TEA (properties packager of COCO)
 - Aspen-Plus properties

... and compare with the native application!

- More than just a distillation column simulator
- Functions with your favorite flowsheet simulator
 as long as it is CAPE OPEN compliant
- Tested with: Aspen Plus HYSYS Pro/II COCO

What is COCO?

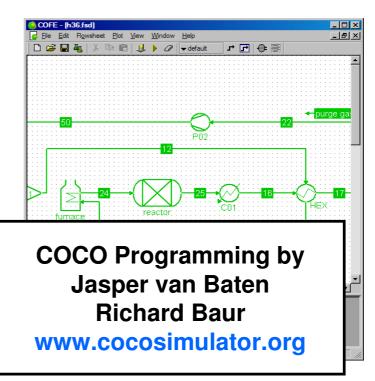
CAPE-OPEN to CAPE-OPEN (COCO):

Simulation environment (COFE)

Thermodynamic property package (TEA)

Collection of unit operations (COUS)

Reaction package (CORN)


COFE: CAPE-OPEN Flowsheeting Environment

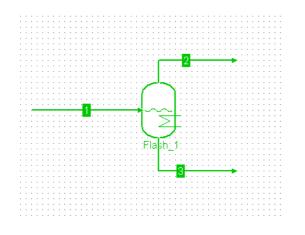
GUI:

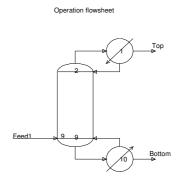
- Graphical flowsheet editing
- Compact display of streams
- Quick access to CO objects
- Property graphing & printing
- Extensive help

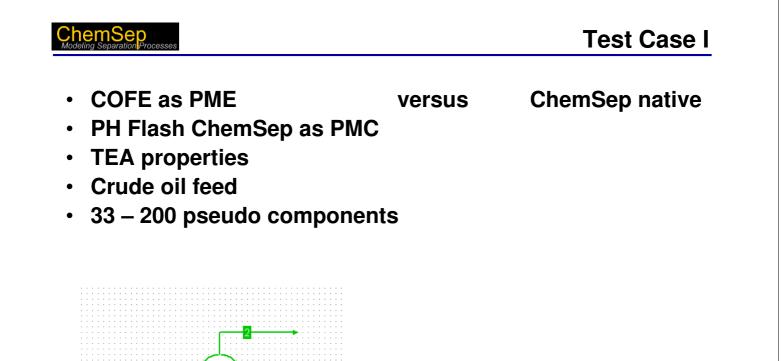
Flowsheeting:

- Steady state
- Solution by tearing algorithm
- Multiple material templates

TEA: Thermodynamics for Engineering Applications

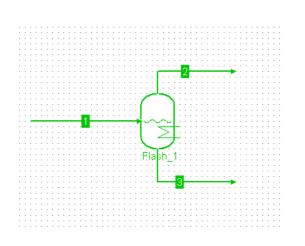

- Pure compound data library (extendible, or use DIPPR)
- 100+ Property calculation methods (> 25 different properties)
- Property derivatives
- Support of external property calculation routines (ICapeThermoCalculationRoutines)

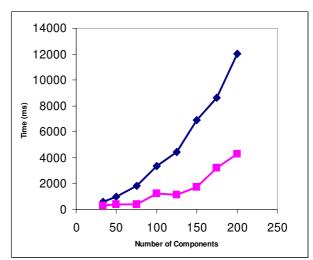

Property Ca General	lculations Compounds	Interaction P	arameters Equilibrium	- 1 c	oup Contributio External Routin	
Name Hydrogen Methane Benzene Toluene Biphenyl	Formula H2 CH4 C6H6 C7H8 C12H10	2 1 7 9	1W 201588 6.0428 8.1136 12.1405 54.211	CAS 1333-74-0 74-82-8 71-43-2 108-88-3 92-52-4		dd lete dit
→ Help F	CD File: C:\Program Files\COCO\da Compound selection:	ata\DefaultCom	ponentLib.pcd			Browse
	Name Air Argon Bromine Carbon tetrachloride Carbon monoxide Carbon dioxide Carbon dioxide Phosgene Trichloroacetyl chloride	Formula Ar Br2 CCl4 CD CD2 CS2 COCl2 COCl2 COCl2 COCl2 COCl4 HCl		Mol Weight 28,9505 39,948 159,808 153,822 28,0104 44,0098 76,143 98,9158 181,832 36,4606 70,9054	CAS 132259-10-0 7440-37-1 7726-95-6 56-23-5 630-08-0 124-38-9 75-15-0 75-44-5 75-0 75-44-5 76-02-8 7647-01-0 7782-50-5	<u></u>
	Hydrogen chloride Chlorine Hydrogen iodide Hydrogen ◀	CI2 HI H2		70.3034 127.912 2.01588	10034-85-2 1333-74-0	


Thermodynamic models and compounds from ChemSep

- PME: COCO and Aspen Plus
- PMC: ChemSep PH Flash and Distillation Column
- Properties: PR EOS in ChemSep or TEA or Aspen Plus
- Feed: up to 200 components

• COFE as PME

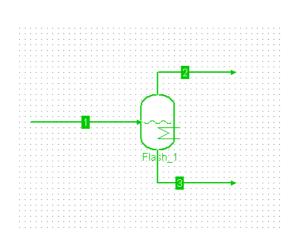

ChemSep

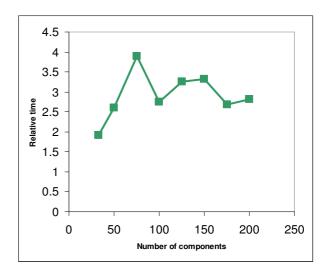

versus

ChemSep native

Test Case I

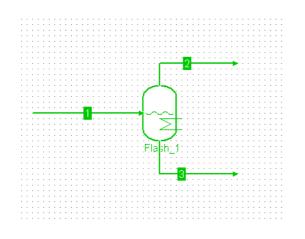
- PH Flash ChemSep as PMC
- TEA properties
- Crude oil feed
- 33 200 pseudo components

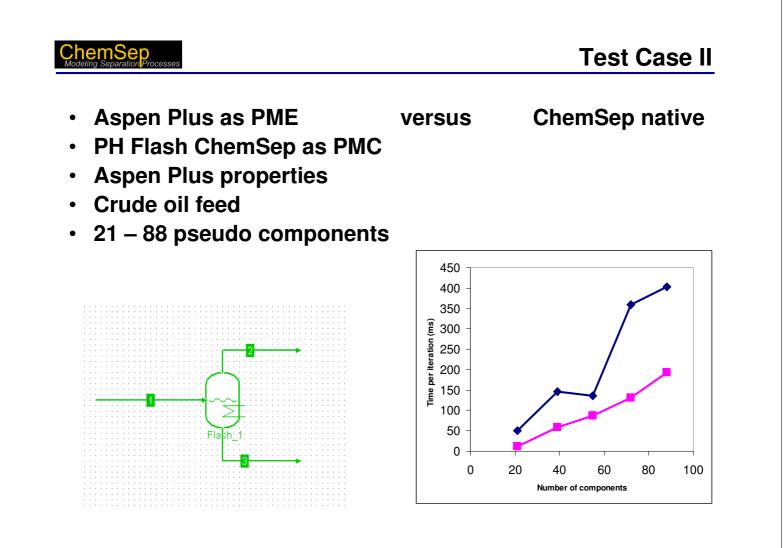

COFE as PME


versus

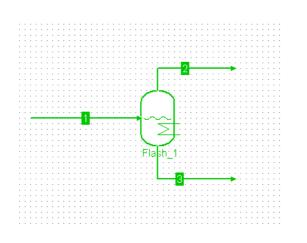
ChemSep native

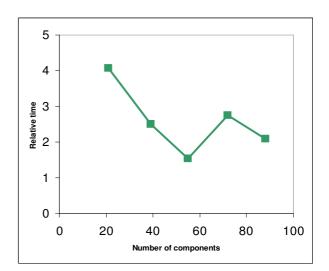
Test Case I


- PH Flash ChemSep as PMC
- TEA properties
- Crude oil feed
- 33 200 pseudo components



- Aspen Plus as PME versus ChemSep native
- PH Flash ChemSep as PMC
- Aspen Plus properties
- Crude oil feed
- 21 88 pseudo components

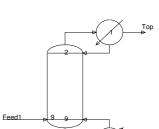

ChemSep Modeling Separation Proce


Aspen Plus as PME

versus

ChemSep native

- PH Flash ChemSep as PMC
- Aspen Plus properties
- Crude oil feed
- 21 88 pseudo components


ChemSep Modeling Separation Proces

- COFE as PME
- ChemSep as PMC: 10 stage distillation column RR = 1; B = 0.9F
- TEA properties
- Crude oil feed
- 33 125 pseudo components

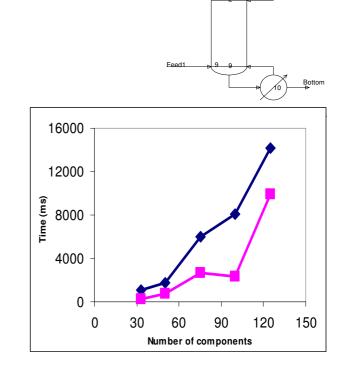
versus

ChemSep native

Operation flowsheet

ChemSep Modeling Separation Proce

Test Case III

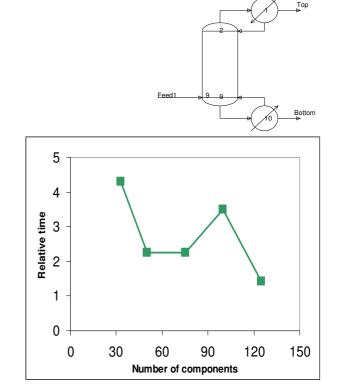

Top

Operation flowsheet

- COFE as PME
- ChemSep as PMC: 10 stage distillation column RR = 1; B = 0.9F
- TEA properties
- Crude oil feed
- 33 125 pseudo components

versus

ChemSep native



ChemSep Modeling Separation Process

- COFE as PME
- ChemSep as PMC: 10 stage distillation column RR = 1; B = 0.9F
- TEA properties
- Crude oil feed
- 33 125 pseudo components

versus

ChemSep native

Test Case III

Operation flowsheet

- CO property calls increase simulation run time by a factor of 1.5 to 4.5 in sample PH flash and distillation column calculations with many components
- Is this enough to matter?