
1

Who Knows Where the Time
Goes?

Computational overheads of
using the thermodynamics

interfaces

6th CAPE-OPEN European
Conference

Munich
2-3 April 2009

Richard Szczepanski, Infochem
Jasper van Baten, AmsterCHEM

Tom Williams, PSE

2

Objectives

Determine computational overhead of using
CO thermo interface compared with a native
interface

Identify how overhead is divided between
different software components

Recommendations for
PP developers

PME/application developers

Future CO specs

Discussion

It has been suggested that standardised software interfaces such as those defined by CAPE-
OPEN will not support computationally efficient links between the components of a process
simulation environment.
The most computationally intensive part of most simulations is concerned with evaluating
physical properties and doing phase or chemical equilibrium calculations.
In this study we have tried to quantify the computational overheads of using the CAPE-
OPEN version 1.0 and 1.1 thermodynamics and physical property interfaces and to
investigate how the different software components such as the Material Object and Property
Package contribute to the overheads. Finally we make some recommendations for factors
that should be considered in the design of software components and for improvements that
might usefully be incorporated in future versions of the interface specifications.

3

Software components

Native

Native PME

Native Physical
Property
System

This diagram shows the typical configuration of a Process Modelling Environment (PME)
with its own physical property system. Typically the interface between the two will be
proprietary and designed to match the way that the PME works. It should be efficient
because the PME and property system ‘know’ each other. Links can be direct and in some
older systems the two components would be tightly integrated.

4

Software components

Native CO

Native PME

Native Physical
Property
System

Native Physical Property
System

MO UO

MO

CO PME

CO Property Package

Native PME

With CO interfaces the PME may have a software layer dedicated to interacting with CO
components. The primary object used by CO interfaces is the Material Object (MO) which
is a container for properties associated with a material (stream). The MO is passed to the CO
Property Package (PP) and provides the input information for physical property
calculations. The results are placed in the MO by the PP and are available for use by the
PME. A CO unit Operation (UO) will also use the MO to get properties from the PP.
Although it is possible to build a PP entirely around the CO interfaces the normal situation
is than some native physical property system will provide a software layer that handles the
requirements of CO. It is clear from this picture why there may be overheads when using the
CO route rather than the native route. There is much more software to traverse and each
component will inevitably add some overhead.

5

Tools Used
Native physical property system

Multiflash 3.8 dll
RKS equation of state
Equimolar mixtures of 2 to 80 compounds (hydrocarbons)
Calculations over grid of P, T points with large number of
repetitions
CP time reproducibility: 5 – 10%

Multiflash CO Property Package
Implemented in C++
Supports CO thermo 1.0 and 1.1

ThermoWrapper for CO 1.1
Library of Fortran-callable routines for using CO interfaces
Provides a Material Object implementation

CO 1.0 Test Application
Custom application using CO 1.0 interface and MO

Matlab CO Thermo Import (AmsterCHEM)
Allows a CO 1.1 PP to be imported into Matlab and used to
perform physical property calculations

The ‘native’ property system used in this study was Infochem’s Multiflash package (version
3.8) which is delivered as a Win32 dll. All comparisons were made with the Redlich-
Kwong-Soave cubic equation of state for equimolar mixtures of hydrocarbons
containing between 2 and 80 compounds. Calculations covered a grid of pressures and
temperatures between 1 bar and 10 bar and 250K and 450K. Timings for a large number
of calculations were accumulated to provide a reasonably large elapsed time and the
process was repeated several times to get some indication of the reproducibility which
was between 5% and 10%. It should be recognised that in a Windows environment it is
difficult to ensure that no other processes are active so the total uncertainty in timing is
greater than the scatter in reproducibility.

The Multiflash CO Property Package implements the CO thermo interfaces versions 1.0 and
1.1 and passes requests for calculations to the Multiflash dll. The original PP was
implemented in VB but the current version has been rewritten in C++ to improve
efficiency and support for CO interfaces. For a comment on the difference in
performance between VB and C++ see the conclusions.

Four software combinations were used in this study:
1. Fortran application calling the Multiflash dll directly.
2. Fortran .application using the ThermoWrapper to call the Multiflash PP. The

ThermoWrapper is a library of Fortran-callable routines that allows a Fortran
application to use a CO version 1.1 PP. In particular it provides a MO implementation.
The ThermoWrapper is available from CO-LaN.

3. C++ application calling the Multiflash PP using an existing Thermo 1.0 MO.
4. Matlab calling the Multiflash PP using the CO Thermo Import component from

AmsterCHEM. This allows Matlab to use a CO 1.1 PP.

6

PT Flash & Overall Enthalpy (CO 1.1)
Application

Specify MO to be used: PP_SetMaterial
Specify list of phases to be considered: MO_SetPresentPhases
Set overall composition and 2 constraints to define calculation (P
and T): MO_SetOverallProp x 3
Call Property Package: PP_CalcEquilibrium

PP_CalcEquilibrium
Get calculation conditions: MO_GetOverallTPFraction
Get list of possible phases for calculation: MO_GetPresentPhases
Do (P,T) flash calculation: call Multiflash dll
Set list of phases actually present at equilibrium:
MO_SetPresentPhases
Set phase compositions,phase fractions, T, P:
MO_SetSinglePhaseProp x 4NP

Application
Get list of phases at equilibrium: MO_GetPresentPhases
Get phase fraction and composition MO_GetSinglePhaseProp x 2NP
Calculate phase enthalpy PP_CalcSinglePhaseProp x NP
Get phase enthalpy MO_GetSinglePhaseProp x NP

This slide shows the interactions between an application and various CO components when
calculating the overall enthalpy of a stream. Essentially we must do a PT flash followed by
a loop over the phases present calculating the enthalpy of each one.
The methods shown are the Thermo 1.1 variety but there are mostly similar calls for version
1.0.
The application must first tell the PP which MO it is going to use (PP_SetMaterial). The list
of possible phases for the flash is set (MO_SetPresentPhases) and the calculation conditions
(MO_SetOverallProp called 3 times). The PP_CalcEquilibrium call carries out the flash.
In the PP the calculation conditions must be recovered from the MO
(MO_GetOverallTPFraction) together with the list of possible phases
(MO_GetPresentPhases). The flash is done by calling the dll. The results must be stored
back in the MO. First the phases present at equilibrium are set (MO_SetPresentPhases) and
the temperature, pressure, phase fraction and composition are set for each phase
(MO_SetSinglePhaseProp).
Control is returned to the application which must retrieve the calculation results. The
enthalpy of each phase is then obtained by calling PP_CalcSinglePhaseProp and the
enthalpy value is found by calling MO_GetSinglePhaseProp.
Note that the application has the choice of doing the equivalent operations without using
CAPE-OPEN; more on this later.

7

PT Flash + Overall enthalpy
Timings relative to Multiflash dll

1

2

3

4

5

6

7

8

9

10

0 10 20 30 40 50 60 70 80

number of components

re
la

tiv
e

tim
e

CO 1.1 ThermoWrapper

The calculation time for the PT flash and enthalpy calculation just described is shown as a
function of the number of components in the mixture. The time is expressed relative to that
for doing the equivalent calculation by making direct calls to the Multiflash dll.
These results are for the ThermoWrapper application. The large overhead for a small
number of components falls rapidly as the flash and property calculations take up more time
for larger mixtures. For 40 components and over the overhead is a factor of about 1.5

8

PT Flash + Overall enthalpy
Timings relative to Multiflash dll

1

2

3

4

5

6

7

8

9

10

0 10 20 30 40 50 60 70 80

number of components

re
la

tiv
e

tim
e

CO 1.1 ThermoWrapper
CO 1.0 Test Application

The picture is very similar for the C++ application with the 1.0 MO.

9

PT Flash + Overall enthalpy
Timings relative to Multiflash dll

1

2

3

4

5

6

7

8

9

10

0 10 20 30 40 50 60 70 80

number of components

re
la

tiv
e

tim
e

CO 1.1 ThermoWrapper
CO 1.0 Application
CO 1.1 Matlab

For the Matlab application there is a much lower overhead. For mixtures of 10 components
or more there is an overhead of between 20% and 15%.

10

Comments

Applications
ThermoWrapper: CO 1.1, Fortran, versatile MO
Test application: CO 1.0, C++, versatile MO
Matlab: CO 1.1, C++, simple MO

Differences between 1.0 and 1.1
Analysis of compounds in MO

For 1.1 is only done when SetMaterial called
For 1.0 must be done on every call for a calculation

Getting calculation conditions
1.1 has GetTPFraction and GetOverallTPFraction

Fewer arguments in 1.1
Set/Get: no compound list
Calculate: no calcType or MO

Performance
No significant penalty for large number of compounds (>40)
whatever the implementation
For more complex models overhead will be smaller
By appropriate design of MO it is possible to have a reasonable
overhead even for small number of compounds

The principal reason for the difference in performance is the type of MO used.
Both the ThermoWrapper application and the C++ application use a versatile MO that is
capable of supporting CO unit operations as well as PMEs. Error checking and diagnostics
must be provided as well as unit conversions. The MO in the Matlab case is relatively
simple and is only used for this application. The operation can be simplified and, most
importantly, the application ‘owns’ the MO and can bypass the Set and Get operations
described previously. It uses direct and efficient methods to access the MO data structures.
There are also some significant differences between the Thermo 1.0 and 1.1 specifications
that can have an influence on overheads. The SetMaterial in 1.1 method allows the PP to
avoid reanalysing the compound list on every call to calculate. The short-cut methods
GetTPFraction and GetOverallTPFraction reduce the number of calls to the MO.
It is clearly possible to reduce the overhead in the overall enthalpy calculation to a tolerable
level by an appropriate design of the MO. Although the overhead is still significant for a 2-
component mixture the calculation is very fast and the overhead is less important. The
model used is quite simple and for more complex thermodynamic models the performance
will be shifted towards that observed for larger mixtures where the overhead is smaller.

11

Property Calculation (CalcSinglePhaseProp)

Application

Set P, T and composition of a phase:
MO_SetSinglePhaseProp x 3

Call to Property package: PP_CalcSinglePhaseProp

PP_CalcSinglePhaseProp

Get P, T and composition of phase: MO_GetTPFraction

Calculate property: call Multiflash dll

Set property value(s): MO_SetSinglePhaseProp

Application

Get property value(s): MO_GetSinglePhaseProp

The sequence of calls for the calculation of a single-phase property for Thermo 1.1 is
shown.
As before there are many Set/Get calls on the MO in addition to the property calculation
itself. Note that again the application can choose to do the equivalent without using CAPE-
OPEN.

12

Timings for log Fugacity Coefficient Calculation
relative to Multiflash dll

1

10

100

0 10 20 30 40 50 60 70 80

number of components

re
la

tiv
e

tim
e

ThermoWrapper 1.1
CalcSinglePhaseProp

The time required to calculate the log fugacity coefficients was evaluated for the same
mixtures as previously used. The calculation was done for both vapour and liquid phases at
the bubble point evaluated at 300K. The results are presented on a log scale.
The overhead is much higher than for the overall enthalpy case because the property
evaluation is much faster than the flash plus properties.

13

Timings for CalcSinglePhaseProp (VB PP)

ln fugacity coefficient by CalcSinglePhaseProp method

0.0

0.2

0.4

0.6

0.8

1.0

2 4 10 20 40 60 80

number of components

pr
op

or
tio

n
of

 ti
m

e

unknown
calculation
overhead in PP
call to PP
Get/Set on MO

The total calculation time has been broken down into a number of categories. The timing
was done on the old Multiflash PP implemented in VB which is not the one used in the rest
of the tests. For the C++ PP the general trends are expected to be the same although the
proportions will be different. There is considerable uncertainty in the results as illustrated by
the proportion of time that could not be accounted for and is shown as ‘unknown’.
As expected the Get/Set calls on the MO make up most of the time except for the largest
mixture. ‘call to PP’ is the time required to go from the calling application to the PP and
presumably is mostly type conversions. The overhead in the PP excludes any MO
operations. The calculation time is what is required to evaluate the property in the
Multiflash dll.

14

Property Calculation (CalcAndGetLnPhi)

Method does not use Material Object for communication

PME

Call Property Package:
PP_CalcAndGetLnPhi(T,P,x,lnφ)

PP_CalcAndGetLnPhi

Type conversions COM to double
Calculate lnφ: call Multiflash dll
Type conversions double to COM

In the Thermo 1.1 specification there is a short-cut method called CalcAndGetLnPhi for
evaluating the log fugacity coefficients (and derivatives). All information is passed by
arguments and nothing needs to be set or got from the MO.

15

Timings for log Fugacity Coefficient Calculation
relative to Multiflash dll

1

10

100

0 10 20 30 40 50 60 70 80

number of components

re
la

tiv
e

tim
e

ThermoWrapper 1.1
CalcSinglePhaseProp
ThermoWrapper 1.1
CalcAndGetLnPhi

The timing exercise was repeated using CalcAndGetLnPhi and the results are shown in this
slide.
The dramatic difference shows clearly the overhead of using the MO for communication.

16

Timings for CalcAndGetLnPhi (VB PP)

ln fugacity coefficient by CalcAndGetLnPhi method

0.0

0.2

0.4

0.6

0.8

1.0

2 4 10 20 40 60 80
number of components

pr
op

or
tio

n
of

 ti
m

e

unknown
calculation
overhead in PP
call to PP

The breakdown of the total time shows how the overhead is reduced making the actual
property calculation a significant part of the whole. Note that for 60+ components, the
calculation takes up all time according to the previous slide. Some timing differences arise
from the VB vs C++ Multiflash DLL.

17

Timings for log Fugacity Coefficient Calculation
relative to Multiflash dll

1

10

100

0 10 20 30 40 50 60 70 80

number of components

re
la

tiv
e

tim
e

ThermoWrapper 1.1
CalcSinglePhaseProp
ThermoWrapper 1.1
CalcAndGetLnPhi
CO 1.1 Matlab
CalSinglePhaseProp

The timing was repeated again with the Matlab application which only implements the
CalcSinglePhaseProp method. The scatter in the timings is also shown by error bars.
Because the Matlab application avoids many of the Set/Get calls on the MO the
performance of the CalcSinglePhaseProp method is comparable with CalcAndGetLnPhi
with the ThermoWrapper.

18

Conclusions and Recommendations 1

The overhead of using a CO property package can be
made quite small: factor of between 1 and 2
Much of the overhead seems to be associated with the
design and operation of the Material Object

Competing objectives of efficiency and generality
error checking and diagnostics
type conversions
support of both thermo 1.0 and 1.1 in the same MO
PME interaction with MO

Attend the short course on implementing MOs
Thermo 1.1 offers the possibility of more efficient
operation

SetMaterial
GetTPFraction and GetOverallTPFraction
Fewer arguments

The overheads of using a CO PP need not be very great. Good design of the MO is
important. The requirements of a versatile, general-purpose MO can result in compromises
on efficiency. Detailed information on MO requirements and design is provided in the short
course on implementing MOs.
The Thermo 1.1 specification offers the possibility of more efficient operation for both the
MO and PP.

19

Conclusions and Recommendations 2

PP Design is also important
Re-writing the Multiflash PP in C++ instead of VB
reduces CalcSinglePhaseProp time by 25% for small no.
of compounds, no difference for large no.
Essential to analyze the compound list efficiently and
only when SetMaterial is called

PME design
The PME should use SetMaterial only when the MO
changes its compound list or compound order (or phase
list for flashes)
PME owns the MO so can avoid all CO Set/Get calls

Comparisons of CO and native applications for complete
flowsheets would be more realistic for estimating
overheads

However > 80% of simulation time is typically spent in
phys props calculations

Attention should also be given to the design of the PP. Changing from VB to C++ for the
implementation of the Multiflash PP produced an efficiency gain of up to 25%. Analysing
the compound list can be time-consuming because it involves string operations. It should be
done efficiently, eg. by use of hash tables and should only be done when the MO changes,
ie. on the call of SetMaterial.
PME design is crucial and again it is important that SetMaterial is only used when necessary
and not prior to every call to the PP. The lists of compounds, phases and properties should
only be obtained once from the PP and stored for reuse. When accessing the MO the PME
should use efficient direct methods to set and retrieve properties.

20

Conclusions and Recommendations 3

Improvements to thermo interfaces
methods to identify compounds, phases and
properties by integers (handles) rather than
strings

Direct methods (similar to CalcAndGetLnPhi) for
evaluating properties in order to eliminate use of
MO as much as possible

SetTPFraction and SetOverallTPFraction methods
to eliminate multiple references to MO

It is now clear that the current (1.1) thermo interfaces could be improved in order to get
better performance. Here are some suggestions for a future thermo version.
It is relatively expensive to process strings. String identifiers are used for compounds,
phases and properties. This could be avoided by having methods that return the lists both as
strings and integers. The integers could be used subsequently to identify the entities.
Reducing interaction with the MO reduces overheads and, probably, makes it easier to
produce a MO. More direct calculation methods like CalcAndGetLnPhi would allow
properties to be calculated and retrieved quickly and simply.
A minor but useful addition would be methods to set the temperature, pressure and
composition in a single call.

21

Who Knows Where the Time
Goes?

Computational overheads of
using the thermodynamics

interfaces

6th CAPE-OPEN European
Conference

Munich
2-3 April 2009

Richard Szczepanski, Infochem
Jasper van Baten, AmsterCHEM

Tom Williams, PSE

