
1

Hi. My name is Jasper. Together with Richard we thought of some ways that 
could make a parallel approach to sequential flowsheeting attractive. Although it 
only partially related to CAPE-OPEN, this is about COCO and about aspects of 
simulations that apply to multiple simulators, so I thought that the annual CO-
LaN meeting was a good place to share some of my experiences with it.



COCO 3 was released in June this year. COCO 1 and COCO 2 already used 
multi-threading in some form, and I have reported on that in earlier presentations. 
However, the level of concurrent processing, that is processing at the same time 
using multiple threads, was limited to solving flowsheets in a single background 
thread and to solving individual cases of a parametric study each in their own 
thread. In COCO 3, we came up with a way to actually divide the calculations of 
solving the flowsheet over multiple threads. To an extent, that is. COCO is of 
course a sequential steady-state flowsheeting, and to make a process that is in 
nature sequential process in parallel is not trivial.

2



So we will look at what can be done and has been done. And how it can be done, 
and what the gain is. Let’s set the scene.

3



This is the Rosen-Cavett problem. Along with the HDA problem, this was the 
first demo flowsheet of COCO. I remember when this took minutes to solve. 
Currently it takes about a second, on my machine. Our starting point will be the 
classical approach.

4



In the classical approach, we partition the flowsheet, then find tear streams, also 
known as cut streams, then we sequence the order of operations of unit 
operations, and then we iterate over guessing cut streams such that the cut stream 
guess results the same value of the cut stream after evaluation of all the unit 
operations, within tolerance. At that point, we have found the solution to the 
flowsheet problem.

5



I can be quick about partitioning. Read Tarjan’s article from 1972 about strongly
connected components, and implement something along those lines. COCO 2 
actually had a home brew partitioner, but Tarjan’s solution I have to concede is 
superior, so I adopted it. This particular flowsheet is one single partition; all the 
units are strongly connected by recycles.

6



Next step us to find the cut streams. We must cut a sufficient amount of streams, 
such that all recycles are broken. But not too many. Particularly, each state 
variable on a cut stream gives us a variable in our overall problem, and we want 
to keep that to a minimum. So we are looking for a set of cut streams that results 
the minimum number of cut stream variables, while breaking all recycles. This is, 
in principle, a combinatorial problem, and that is exactly how it is approached in 
COFE. Note that the answer is not unique, so there is room for applying 
additional criteria to the cutting. We can for example cut trough streams 24 and 
S7, as shown on the slide.

7



The sequencing is trivial. Given known guesses for cut streams, find unit 
operations that can be evaluated because all feeds are known. This in turn makes 
that their products are known, and we can sequence the next unit operations. For 
example….

8



9



10



11



12



13



14



15



16



17



18



19



We have sequenced all 12 unit operations, and it takes a sequence of 12 items. 
Obviously. If we are evaluating sequentially, we need 12 evaluation cycles to 
evaluate 12 unit operations.

20



Then we need to iterate to solve the flowsheet. Starting from a guessed value of 
the cut streams, evaluate all units in the determined evaluation order. This results 
new values for the cut stream, and we are looking or cut stream guesses that 
results values for the cut stream equal to the guessed value. This problem is 
amendable to direct substitution. We can accelerate that with for example the 
Wegstein method, or the General Dominant Eigenvalue method. COFE 
implements Wegstein at this moment, and will soon provide a General Dominant 
Eigenvalue approach. 
Sometimes we must fall back on a full Newton, because of its superior 
convergence behavior, or because the problem contains additional equations such 
as those imposed by controllers, that make that the problem is no longer 
amendable for direct substitution. This of course requires first order derivatives, 
that we do not have available analytically, so we estimate them using 
perturbations. 
Most of you will be familiar with the classical approach outlined here. So let us 
see how we can modify it and benefit from multiple processors and concurrent 
evaluations.

21



Partitioning itself is fast. We do it on a single core. So no change there. Note that 
the result of partitioning however does imply a change. Partitions that do not 
depend on each other can be evaluated concurrently. Let us have a closer look.

22



Here we have 5 partitions. Note that there are no recycles between partitions, 
because partitions are not strongly coupled components. However, recycles may 
appear within each partition.

23



The first two partitions do not depend on each other and can be evaluated 
concurrently. The middle one can only be evaluated once the first two are done. 
Once the middle one is done, we can evaluate the remaining two concurrently 
again.

24



Let us first look at sequencing before we look at cutting. Starting with the same 
cut streams as before, we now see we have two unit operations with known feeds. 
Hence, we can sequence two unit operations concurrently.

25



Next, we have 3 unit operations with known feeds.

26



Then 2 more.

27



And another 2.

28



And two more.

29



And two more.

30



And finally the mixer.

31



We see, that in case all unit operations would take an equal amount of time to 
evaluate, and we have a sufficient amount of threads available, we can do a single 
evaluation in 6 instead of 12 cycles. However, this answer depends on where we 
cut, so let’s look at cutting again.

32



Here is another possible choice of cut streams that breaks all recycles with and 
equal amount of cut variables. If we sequence from here….

33



We can start with two unit operations, 

34



Then four.

35



Another two.

36



Two more

37



And the final two. Now we have 5 cycles instead of 6 cycles. This implies we 
need to optimize our cut stream determination for a good load division of 
calculations. While maintaining the requirement to cut through the least amount 
of variables and break all recycles. We should of course also take into account the 
actual time that is used for the evaluation of a unit operation. COFE takes a wall 
time average over the last 100 or so evaluations of each unit as an estimate.

38



For iterations, in general, we can concurrently evaluate independent parts. We 
have optimized the cut stream selection for single function evaluations, but we 
can also independently queue all perturbations in case of a Newton solver. In a 
parametric study things get more interesting: COFE keeps track on queueing each 
case’s partitions after its dependencies within the same flowsheet, but also on the 
same partition in the flowsheet case that holds the initial guesses for the next 
step. It is not required to wait for the entire parent flowsheet to finished. Just the 
partitions that initialize the current partition.

39



So to summarize, we can start evaluating unit operations for which all 
prerequisites are known. Independent items can be calculated concurrently. 
COFE’s solvers have been rewritten from scratch: all is expressed as chains of 
dependent calculations. Newton for example is formulated as a line search that 
contains dependent function evaluations. The line search in turn depends on a 
direction calculation, which depends on a Jacobian, which depends on all the 
individual perturbations. These are all small tasks, and there is a stack of tasks 
that have no prerequisites. These tasks are divided over n threads. Once a task is 
finished, all tasks that depend on it, are checked for further dependencies. If there 
aren’t any, the task is added to the execution stack.

40



About the how I will be short, as I have presented this before: in each thread you 
will need a copy of each PMC. Unit operations are created the first time they are 
needed in a thread, to prevent creating multiple copies in case we only need one, 
that is, for a unit operation that does not appear in a recycle.

For material objects we could get away with reusing a single copy in multiple 
thread, and connecting this material object to the same port of each copy of the 
unit operation in each thread, but only in case the material is not concurrently 
accessed, that is, if there is no other thread that operates on the feeds or products 
of a unit operation during its evaluation. In COFE, concurrent stream access 
happens: particularly during Jacobian evaluations and parametric studies. So 
COFE creates a copy of each material object in each thread. Clearly the state, 
including the entire phase equilibrium, must be copied between the threads. This 
state actually is associated with each task that is queued.

41



Interesting to look at, as it is time consuming and a good candidate for 
performance optimization, is the Jacobian for the Newton method. We can 
perturb cut stream variables, or we can perturb individual unit operations and 
construct the Jacobian. Which one is better depends on the problem at hand. Let’s 
have a look.

42



Cut stream perturbation is simple: we apply a small offset to one of the cut stream 
variables, re-evaluate all the units and check the effect on the outcome of all cut 
stream variables. COFE 2 did it like that, COFE 3 realizes that you do not need to 
re-evaluate all unit operations.

43



The units with a red cross though it are not affected by the perturbations on 
stream X1 and need not be reevaluated during such perturbations. Similarly, the 
units with an orange cross are not affected by perturbations of stream X2.

44



Two units remain, which are perturbed twice. 

45



Another approach would be to perturb the state variables on each feed to each 
unit operations. The derivatives follow from chain rule, as shown on this slide. 
For the Cavett flowsheet this results exactly the same number of unit evaluation 
evaluations, but…

46



In general this is not the case. In case of multiple recycles, often Jacobian
reconstruction leads to fewer unit operation evaluations. Also, we should not 
perturb away from a phase boundary, as this would result incorrect derivatives. 
So if we detect streams that are on the phase boundary, that is, streams that have 
an incipient phase, we can constrain perturbation to the phase boundary, which 
saves a perturbation. 

Even if the amount of unit operation evaluations is equal, in the reconstruction 
approach there are more, but smaller tasks, that lead to a better load division.

You could also detect by perturbation that a given unit operates at constant 
pressure and does not change the product pressure, for example. This would 
eliminate the need to perturb the downstream unit for feed pressure. However, 
this approach has a penalty of load division, as perturbations need to wait for 
each other, and COFE does not do so.

47



Reconstruction is not always faster. Take this example, where we have a unit 
operations connected with streams with n variables and single recycle with m 
variables. If m is smaller than n, cutting the recycle and perturbing it will lead to 
fewer unit operation perturbations. This is not an uncommon situation, if the 
streams connecting the unit operations are material streams and the recycle is an 
information stream with for example a controller set point.

Which method is better depends on the partition at hand and can be determined as 
part of the partition analysis.

48



Talking about the gain is not so simple. Comparing with previous versions of 
COCO is not realistic. We have re-written all solvers to fit into the new scheme, 
and doing so revealed some solver bugs and room for solver improvement. If you 
would compare, you will find that all demo flowsheets solve 6x to 20x faster 
now, but a substantial part of that can be contributed to fewer iterations, and to 
fewer unit operation evaluations when calculating the Jacobian. 

The remaining metrics are: how does solving with 1 thread compare to solving 
with n threads, and what is the CPU coverage.

49



Scaling and CPU coverage are near perfect during Jacobian perturbations, and 
during parametric studies.

During ‘sequential’ function evaluation, the gain depends highly on the structure 
of the flowsheet. If there are more independent partitions, and more recycles 
within a partition, the gain is higher.

The gain for sequential evaluations is not great if one path within a recycle uses 
considerably more CPU time than all other paths. This presents a bottle neck.

50



Here we see some results from the Cavett problem. Note that this is not the best 
problem to test with: we compare a serial solution with a concurrent solution, 
where the solution time is quick and the penalty for the concurrent solution is the 
creation of additional objects, the transfer of stream data between threads and the 
synchronization. We see that using 8 nodes, Cavett solves in 77% of the time 
compared to the serial case. Note that the standard deviation over 10 
measurements is much higher in the serial case, because any delay in a thread 
diffuses in many threads in the concurrent case. You could argue, considering the 
standard deviation of the serial case, that there is no difference. The reason in this 
case is that the flowsheet is so simple it solves with direct substitutions only and 
there is a bottle neck coming from the topmost two units in the flowsheet.

If we switch off the direct substitutions we notice the 8-node version uses only a 
third of the time of the serial solution. Clearly more gain there. Why not one 8th? 
Let’s take a peek at the CPU coverage.

51



We see that the CPU usage is a 100% of 8 cores a substantial part of the solution 
process. This represents the Jacobian perturbations. The other part scales as poor 
as the direct substitution case.

(don’t mind the target concurrency here, this was done on machine with 16 
logical but 8 physical nodes).

52



Here is another way to look at the same data. This is a representation of the CPU 
usage of the 8 threads during some Newton iterates. All threads are used while 
perturbing. In between the perturbations is the line search, where there is some 
but not much concurrency. The bottle neck units are the ones that take longer 
time to evaluate in this figure.

53



To conclude: classical sequential flowsheeting becomes dependency driven 
flowsheeting if you want to distribute the load over several nodes.

The gain is higher, and I cannot stress this enough, where you need it. With 
complex flowsheets.

The gain is significant for Newton iterations and parametric studies.

For simple flowsheets the gain may be not so great yet, but we are still working 
on improvements.

And a conclusion for COFE 3 vs COFE 2 is that smarter Jacobian evaluations 
lead to fewer unit operation evaluations, but this is independent of concurrency of 
course.

54



We do want to aim for improved performance also during function evaluations:

We are looking for a way to use multiple concurrent function evalutions in the 
Newton line search.

Also the General Dominant Eigenvalue Method may be promising in case we can 
use independent concurrent function evaluations to construct the predictor matrix.

Research is to be done here, and if anybody is interested or has ideas, please 
contact us.

55



Finally, unrelated to the remainder of this presentation, COFE 3 uses a new file 
format: zipped XML. This allows third party applications to directly analyse and 
manipulate COFE flowsheet files. For PMC developers this implies that it may 
help to provide an interface to persistence that allows for storage of data in 
human readable chunks. The Property Bag interface is suitable for that, and I 
hope some PME vendors will provide support for that.

56



As always, COCO is free. Feel free to download. If you are a CAPE-OPEN 
developers we encourage you to take part in the compliancy testing programme at 
cocosimulator.org. And of course the two other development resources should be 
mentioned: the CAPE-OPEN forum, and myself at AmsterCHEM.

57



Thank you for your attention. I would also like to thank all software vendors that 
help develop COCO into what is it today, either by cooperations, or by interop 
testing licenses. Thank you indeed!

58


