
Slide 1

CO-LaN Annual meeting Sept 2014, Frankfurt, Germany

IUnknown
IDispatch
ICapeIdentification
ICape….

A.k.a. the boring stuff

Presenter
Presentation Notes
Good morning, I am Jasper van Baten. I write a lot of CAPE-OPEN software. I used to base all my implementations on MSVC with ATL or even MFC, depending on the GUI requirements. This of course requires access to Microsoft Visual Studio Professional, which is not free of charge. Not all my clients liked that idea. So a few years ago I built my own framework to do this. I had this on the shelf until late last year when I started using it. In the context of a new object model, and since I have not presented here for a while, I thought it would be nice to share my experiences on writing COM based CAPE-OPEN objects from scratch. Aka the boring stuff; interesting to programmers, perhaps not so interesting to end-users. Consider it a 20 minute coffee break or a chance to look into the fine details of CAPE-OPEN function calling. Up to you.

Slide 2

IUnknown
IDispatch
ICapeIdentification
ICape….

Microsoft Foundation Classes

Automation Template Library

MicroSoft Visual C++

Presenter
Presentation Notes
CAPE-OPEN PMCs and PMEs at this point pretty much all use COM. The majority uses Visual studio as a basis. Visual Basic 6 is a rather intuitive platform to write COM objects, but is retired. Replaced by .NET, which is also an attractive option from an authoring point of view, but as it runs in a VM performance is not optimal. Remains Visual C++, with ATL or MFC as the basis for COM classes. ATL and MFC both come with the paid version of Visual Studio. They are very well suited for making COM objects, but do not take into account that the average CAPE-OPEN object is rather simple, from a COM point of view. ATL and MFC offer much more than we need, not all of which is easily turned off, leading to somewhat bloated code.
Delphi is another option, non-Microsoft. And there is a hand full of scripting languages, like Python, that have COM bindings and can be used to write COM objects. All not my cup of tea.

Slide 3

IUnknown
IDispatch
ICapeIdentification
ICape….

• MSVC
• Intel C++
• MinGW
• Cygwin
• (Borland C++)
• (OpenWatcom)
• …

Presenter
Presentation Notes
I like C++. Especially with the new C++ 11 standard and its move semantics, which make that we can write rather efficient data containers. Personally I still use Visual Studio with MSVC or the Intel C++ compiler. But if we do not depend on it, we may as well use MinGW, Cygwin, or less preferred, a little bit behind on the C++ 11 standard, Borland or OpenWatcom C++. Or others. The key is to not depend on anything proprietary of course.

Slide 4

class UnitOperation {

 ParameterCollection parameterCollection;

};

Presenter
Presentation Notes
I will demonstrate a very simple COM object, the entire implementation, to show exactly how straight forward it is to do it from scratch, and why. After that I will briefly go over additional requirements for a CAPE-OPEN COM wizard, without going into further details.
What you see here is a C++ class, called UnitOperation. This can have as we all know, a parameter collection. Note that I did something here which is not straight forward at all with ATL or MFC: I declared the parameterCollection, which is in itself a COM object, as a non-pointer variable. The ParameterCollection class is just a plain C++ class, it is not a smart pointer implementation. We can do this because we do not care about its life cycle management; it will exist as long as the unit operation exists. Let’s have a look at its implementation.

Slide 5

class ParameterCollection :
public ICapeIdentification,
public ICapeCollection {

public:

 //IUnknown

 //IDispatch

 //ICapeIdentification

 //ICapeCollection

};

Presenter
Presentation Notes
Here is the class body itself. We have a ParameterCollection class, which derives from ICapeIdentification, and ICapeCollection. For simplicity I presume that this class will never produce an error, which is nonsense of course as we have no control over what arguments are passed to the Item member of ICapeCollection. So in real life we need to add ECape… error interfaces as well.

Like all CAPE-OPEN interfaces, ICapeIdentification and ICapeCollection are derived from IDispatch. IDispatch in turn derives from IUnknown, so our class derives from both IUnknown and IDispatch twice. I will now demonstrate implementation of each of these 4 interfaces.

Slide 6

//IUnknown

HRESULT _stdcall QueryInterface(const IID &iid,void **iface) {

HRESULT res=NO_ERROR;
if (iid==IID_IUnknown) {
 iface=(IUnknown)(ICapeCollection*)this;
} else if (iid==IID_IDispatch) {
 iface=(IDispatch)(ICapeCollection*)this;
} else if (iid==IID_ICapeIdentification) {
 iface=(ICapeIdentification)this;
} else if (iid==IID_ICapeCollection) {
 iface=(ICapeCollection)this;
} else {
 *iface=NULL;
 res=E_NOINTERFACE;
}

 return res;
}

Presenter
Presentation Notes
IUnknown has three members: QueryInterface, AddRef and Release. Here’s the QueryInterface implementation. Simple really, just cast out class to whatever pointer is requested. Note the double cast in the cases of IUnknown and IDispatch; otherwise the compiler will get confused about which IUnknown or IDispatch to pick. It really does not matter which one to return of course, but the compiler does not know that.

Slide 7

//IUnknown

ULONG _stdcall AddRef() {
 return 1;
}

ULONG _stdcall Release() {
 return 1;
}

Presenter
Presentation Notes
I showed that our instance is actually not life cycle managed; it is a normal member of the unit operation class. Hence, no point in reference counting. Which makes any implementation of AddRef and Release redundant. Here’s mine.

Slide 8

//IUnknown

int count=1;

ULONG _stdcall AddRef() {
 return ++count;
}

ULONG _stdcall Release() {
 if ((--count)==0) delete this;
 return count;
}

Also at QueryInterface

Presenter
Presentation Notes
For most COM objects you would expect life cycle management. In this case we would keep track of the object’s reference count, which we can initialize at 0 or 1. I use 1. AddRef increments it, Release decrements it. If the reference count hits zero, the object will self destruct. This implies of course that we simply created the object of the heap with the new operator. Again a lot simpler than what ATL or MFC offer. In addition, this allows us to use a constructor with arguments. Very handy.

Note that for a life cycle managed class, it needs to also increment the reference count at a successful QueryInterface call.

Slide 9

• Type is known
(from TLB or IDL)

• Type obtained via
QueryInterface

• Call via VTABLE

• Parameters as
in type specification

• No type import

• Calls made via
IDispatch

• GetIDsOfNames:
function name to ID
(integer value)

• Invoke:
use function ID

All parameters must be

VARIANTS

TLB = Type LiBrary
IDL = Interface Definition Language

Presenter
Presentation Notes
Now – on to the IDispatch interface. IDispatch is used for late binding. Normally CAPE-OPEN implementations use early binding. Here, we import a type library or IDL, so that all types are bound in advance, or early. Hence the name. We get a pointer of a particular type by using QueryInterface from IUnknown. As the layout of the type is known, the VTABLE is used to find the address of the function to be called. And the parameters are just as specified in the type library.

In contrast, with late binding, we do not know what type we are dealing with at compile time, and we have to query type information at run time. This is done via IDispatch. Essentially there are two important members if you already know which function you want to call and what arguments it has. With GetIDsOfNames you get the dispatch ID of the function. And with Invoke you execute the function. Invoke takes the ID as argument, but also a VARIANT array that represents the arguments to the function. Ergo: all arguments must be wrapped into VARIANTs. Clearly late binding comes with some performance overhead. Which in itself is a good reason not to go there.

Slide 10

“Although it is possible to expose multiple dual interfaces on a
single COM object, it is not recommended. If there are multiple
dual interfaces, there must be only one IDispatch interface
exposed. The techniques available to ensure that this is the case
carry penalties such as loss of function or increased code
complexity. The developer considering this approach should
carefully weigh the advantages and disadvantages”.

• All CAPE-OPEN interfaces inherit from IDispatch

• CAPE-OPEN requires multiple interfaces on each object

• Microsoft advises against multiple Dispatch
implementations on a single object

• ATL does not support it:

Presenter
Presentation Notes
All CAPE-OPEN interfaces are defined in the IDL as dual interfaces; they derive from IDispatch and IUnknown. In addition, CAPE-OPEN is designed such that all objects require to implement multiple interfaces, for example ICapeIdentification, ICapeUnit, ICapeUnitReport, ICapeUtilities and the error interfaces on a unit operation. Microsoft advises against implementing multiple dispatch interfaces on any object. ATL does not even support it, as shown by this except from the ATL help. Again good reasons not to use late binding.

Slide 11

 interface ICapeIdentification : IDispatch {
 [id(0x00000001), propget, helpstring("property ComponentName")]
 HRESULT ComponentName([out, retval] BSTR* name);
 [id(0x00000001), propput, helpstring("property ComponentName")]
 HRESULT ComponentName([in] BSTR name);
 [id(0x00000002), propget, helpstring("property ComponentDescription")]
 HRESULT ComponentDescription([out, retval] BSTR* desc);
 [id(0x00000002), propput, helpstring("property ComponentDescription")]
 HRESULT ComponentDescription([in] BSTR desc);
 };

 [
 odl,
 uuid(678C099A-0093-11D2-A67D-00105A42887F),
 helpstring("ICapeCollection Interface"),
 dual,
 oleautomation
]
 interface ICapeCollection : IDispatch {
 [id(0x00000001), helpstring("gets an item specified by index or name")]
 HRESULT Item(
 [in] VARIANT id,
 [out, retval] IDispatch** Item);
 [id(0x00000002), helpstring("Number of items in the collection")]
 HRESULT Count([out, retval] long* itemsCount);
 };

Presenter
Presentation Notes
But even if we were to ignore all that and wanted to be nice and wanted to implement a multi-dispatch interface, CAPE-OPEN has sabotaged that by putting invalid dispatch IDs in the type library. Here’s the IDL declarations of our ICapeIdentification and ICapeCollection. Note that the dispatch IDs start numbering at 1. This holds for all CAPE-OPEN interfaces, and therefore GetIDsOfNames would not be able to return a unique dispatch ID for a particular function and implement multiple CAPE-OPEN interfaces and abide by the type lib assigned dispatch IDs even if you wanted to. It is just not possible.
Clearly late binding is a no-go in CAPE-OPEN and it would have been better if CAPE-OPEN interface had been derived from IUnkown. A good lesson for the new object model.

So this makes one of the more difficult aspects of COM implementations, implementing IDispatch, suddenly rather easy.

Slide 12

//IDispatch

HRESULT _stdcall GetTypeInfoCount(UINT *count) {
 if (!count) return E_POINTER;
 *count=0;
 return NO_ERROR;
}

HRESULT _stdcall GetTypeInfo(UINT,LCID,ITypeInfo **) {
 return E_UNEXPECTED;
}

HRESULT _stdcall GetIDsOfNames(const IID &,LPOLESTR
*,UINT,LCID,DISPID *) {
 return E_UNEXPECTED;
}

HRESULT _stdcall Invoke(DISPID,const IID &,LCID,WORD,DISPPARAMS
*,VARIANT *,EXCEPINFO *,UINT *) {
 return E_UNEXPECTED;
}

Presenter
Presentation Notes
We implement a broken IDispatch. The only function that returns a proper result is GetTypeInfoCount, which replies it has no type information.

Surely ATL will not put such a light weight IDispatch implementation down for us.

Slide 13

//ICapeIdentification

HRESULT _stdcall get_ComponentName(/*[out, retval]*/BSTR *name) {
 if (!name) return E_POINTER;
 *name=SysAllocString(L"ParameterCollection");
 return NO_ERROR;
}

HRESULT _stdcall put_ComponentName(/*[in]*/ BSTR name) {
 return E_NOTIMPL;
}

HRESULT _stdcall get_ComponentDescription(/*[out, retval]*/BSTR *desc) {
 if (!desc) return E_POINTER;
 *desc=SysAllocString(L"Parameter Collection Example");
 return NO_ERROR;
}

HRESULT _stdcall put_ComponentDescription(/*[in]*/ BSTR desc) {
 return E_NOTIMPL;
}

Presenter
Presentation Notes
That leaves us with the tasks of implementing our actual CAPE-OPEN interfaces. This is a parameter collection, so presumably nobody will rename it or change its description. If somebody would try, it would fail. Here’s a simple implementation.

Note that the parameter annotations, in, out and retval, are inside the code in comments. Very handy for properly dealing with memory allocations and object ownership. Again something that the ATL object wizard will not do for us, for reasons unknown to me.

Slide 14

//ICapeCollection

HRESULT _stdcall Item(/*[out, retval]*/VARIANT,IDispatch **item) {

……
}

HRESULT _stdcall Count(/*[out, retval]*/long *count) {

……
}

Presenter
Presentation Notes
I am not going to bother you with an actual implementation for the ICapeCollection. Surely underlying this class, there will be some kind of vector of objects, and for large collections properly a hash table to look up objects by name.

My point has been made already, yes, it is this simple to implement a CAPE-OPEN COM object.

Slide 15

• In-proces COM server: DLL

• Class factory for PMC primary object:
Implements IClassFactory:

 HRESULT CreateInstance(LPUNKNOWN,REFIID,void **);
 HRESULT LockServer(BOOL incr);

• COM entry points:

 HRESULT DllGetClassObject(REFCLSID, REFIID, LPVOID*);
 HRESULT DllCanUnloadNow();
 HRESULT DllRegisterServer();
 HRESULT DllUnregisterServer();

See water source code on cocosimulator.org

Presenter
Presentation Notes
So what else do we need for a CAPE-OPEN PMC? This will be in-process COM server, so we need to set it up as a DLL. Inside the DLL we need a mechanism to create our PMC primary object. This in itself is again a COM object, that implements the IClassFactory interface. This interface has two functions: one to create the object and return an interface pointer of the requested type, and one to increase the locking count on the DLL. I will get back to the latter.
Furthermore, we have one DLL entry point that returns the class factory object, a DLL entry point that checks whether it is safe to unload the DLL, and two more entry points for the COM registration of the objects inside the DLL. Except for the last two functions, all these functions must be thread safe.
COCO 2.7 was released a few weeks ago. With that, the new implementation for the water property package was made available, again as open source. This will show you the details of the class factory and the above entry points, if you are interested.

Slide 16

• Increase while creating an object, decrease while
destroying an object

• IClassFactory::LockServer()

• Return at DllCanUnloadNow()

• Thread safe:

• InterlockIncrement()

• InterlockDecrement()

Presenter
Presentation Notes
Each life cycle managed COM object has a reference count, but the entire DLL itself also has a reference count. This indicates whether it is safe to unload the DLL. You should increment the DLLs reference count each time you create a COM object and decrement it each time you destroy a COM object. One can also lock the DLL using the LockServer method of the class factory, which increments or decrements the DLL reference count. If somebody asks whether its ok to unload the DLL, simply return true if the reference count is zero, false otherwise. Use thread safe methods to increment and decrement the reference count please.

Slide 17

String classes

Container
classes

BSTR wrappers

VARIANT
wrappers

COM smart
pointers

Synchronization
objects

Dialog
wrappers

Custom,
or Windows API

Custom Custom,
3rd party,
.NET

Presenter
Presentation Notes
Right – that was all for the COM server itself.
Using MFC or ATL of course also gives you a bunch of other utility classes that we may need for the job. String classes and container classes such as vectors and hash tables are easily replaced by the standard template library. BSTR and VARIANT wrapper classes and COM smart pointers can be taken from the Windows API, but I like my coffee black without sugar and milk, so I have my own implementations. Synchronization objects are required for the thread safe parts, but they take about 10 lines to write, using the Window’s CriticalSection objects. If you want to implement a dialog for the Edit method of ICapeUtilites, you can use 3rd party wrappers or the Windows API directly. In this case an external .NET DLL is also not a bad idea perhaps. Personally I like my coffee black, no sugar and milk, so I write my own, no fringes.

Slide 18

• All mundane work

• Generate DLL framework

• All base classes

• Class factory

• Basic COM object

• Basic CAPE-OPEN object

• CAPE-OPEN type lib

Presenter
Presentation Notes
I have switched away from ATL. I wrote myself a wizard to make life easy. Firstly this does the mundane work, such as set up the DLL project, dump all base classes in there and implement the class factory and the basic COM object base class. It implement the basic CAPE-OPEN object base class, with ICapeIdentification and error handling. And of course it puts the pre-generated import headers for the CAPE-OPEN type library in the project.

Slide 19

• Keeping track of registry entries

• COM server

• COM objects

• CAPE-OPEN categories

• CapeDescription keys

• TLB registration usually
not required

Presenter
Presentation Notes
Then I can use it to create new CAPE-OPEN classes. Keeping track of the registry entries is cumbersome and laborious. So a perfect candidate to automate. Essentially this simply creates a static array of registry information in the code, much simpler than ATL does. Typically a separate type library registration is not required for PMCs as the only types we use come from the CAPE-OPEN type library.

Slide 20

• Generation of classes

• Keep track of registry entries

• Implement interfaces

• Update QueryInterface

• Generate all function headers

• Including argument annotations

• Basic argument checking (NULL pointers)

• Exception handling

Presenter
Presentation Notes
Finally the wizard takes care of implementing interfaces in classes. It implements interfaces, and by doing so it updates QueryInterface and generates all function headers, including the function argument annotations in, out, and retval. It even puts some function bodies in there: there is basic argument checking for NULL pointers, and there is a basic exception handling scheme that will catch all thrown exceptions and translates them into CAPE-OPEN errors.

Slide 21

• Customer driven: no Visual Studio requirement

• Builds with a variety of C++ compilers

 (including MinGW, Cygwin, MSCV Express)

• Zero external dependencies

• Lean code, without fringes, low footprint, fast

• Provides insights on middle ware requirements

Satisfaction all around….

Presenter
Presentation Notes
So to summarize, I started this because customers did not want me to use Visual Studio Professional. In dropping all proprietary dependencies, its code builds with a variety of C++ compilers. The resulting code is efficient and has a low memory foot print. And not depending on frameworks to do the COM stuff for you, you get to look into what are the minimum requirements to get things working. These overlap to a large extent with the requirements for a new CAPE-OPEN middleware, so it is a good learning exercise.

I am very happy with the wizard, and I have stopped using ATL all around. The new framework has been used in several commercial projects already. If you are interested, I’d be happy to give you more background information.

Any questions?

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21

