
1

Good morning; my name is Jasper van Baten. I am an independent software 
consultant from AmsterCHEM, and the principle author of the COCO steady state 
flowsheet simulation software. This is a chemical process flowsheet environment 
that is entirely based on CAPE-OPEN. As with any chemical process calculations, 
COCO’s flowsheet software COFE heavily depends on thermodynamic property 
and phase equilibrium calculations. COCO comes with the TEA thermodynamic 
server, but can be used in conjunction with other thermodynamic servers. In this 
presentation I want to share my experience with thermodynamics, CAPE-OPEN and 
multi-threading.



2

Let us start with setting the context. This slide shows a flowsheet for the simulation 
of the hydro-de-alkylation HDA process, as simulated in the COCO flowsheeting 
environment. Such flowsheet simulations are quite common in process engineering. 
They are used for design of new processes and analysis of existing processes. This 
particular flowsheet application is a steady state flowsheet environment. We see the 
feed streams of the process on the top left. Streams connect to models for process 
equipment, such as pumps, reactors, distillation columns, etc. These are called Unit 
Operations. Each of the unit operation models typically depends on thermodynamic 
property and phase equilibrium calculations to come to a solution. The flowsheeting 
application then has the task to come to an overall solution in which all the unit 
operation models are solved.

The thermodynamics are typically configured once, at the flowsheeting level. The 
unit operation models therefore typically all use thermodynamics that are served by 
the simulation application, instead of each unit operation defining its own 
thermodynamics. 

The flowsheet is solved iteratively, as multiple recycles are present. This particular 
flowsheet is solved within minutes. If we look at optimization, the flowsheet has to 
be solved multiple times to meet the optimization criteria. In this case, processing 
time drastically increases. If we look at operator training, or process control, we 
need to move to a dynamic flowsheeting environment, instead of a steady state one; 
here too processing times drastically increase. Typically, about 90% of the time 
spent in flowsheet calculations is due to thermodynamic calculations.



3

Another area in which thermodynamic calculations may be used extensively is 
equipment design. The image shown here is part of a steam reformer simulated in 
COMSOL Multiphysics. In both the cooling tubes and in the reactor, computation 
fluid dynamics, or CFD, type of calculations are used to close the impulse, mass and 
energy balances. Pressure, temperature and compositions are time and space 
dependent. For accurate modeling, transport properties such as densities, viscosities 
and thermal conductivities used in these calculations can be based on rigorous 
thermodynamic calculations performed by an external thermodynamic server. Also 
here, the time spent in thermodynamic calculations is considerable.

We see that for both process calculations, and equipment calculation, we need to 
think about efficient strategies to make get the best performance we can get, and 
part of that problem lies in efficient thermodynamic calculations. This presentation 
will focus on efficient computational strategies – this is not something that end 
users should be concerned with, but something software developers should think 
about.



4

Now that we have set the scene, the remainder of the presentation will go into the 
details somewhat. First we will have a look at the current trend in computer 
hardware. We will see that we are best of distributing the computational load over 
multiple processes, or multiple threads in the same process. Next, I will tell 
something about CAPE-OPEN; this will be the source of all thermodynamic 
property and equilibrium calculations. Most CAPE-OPEN implementations run on 
Windows, and communicate via the Windows Common Object Model, or COM. 
Based on this object model, we will discuss threading models, and see which best to 
use. We will also discuss marshalling of COM calls, how performance is affected, 
and how to avoid it. Finally we will have a look at some issues that may result from 
implementations of thermodynamic servers that are currently commercially 
available.



5

Since the start of the computer era, the amount of transistors available on affordable 
computers, typically doubled every 2 years; this is known as Moore’s law; the 
image is from Wikipedia commons. In an ideal world, this means that without 
further adjustments, our programs would run twice as fast every two years. This is 
not necessarily the case. If we take a closer look at the last portion of the line, as 
shown in the insert, we see that in the last couple of years, multi-core nodes appear. 
Whereas the increase in computational power was dominated by faster cores up to 
about 2004, currently computers power increases due to an increase in the number 
of computational cores. This means, if we want to benefit from faster computers, we 
need to divide our computations over multiple cores. Desktop computers equipped 
with up to 16 cores are not an exception anymore.



6

To distribute the computational nodes over mutliple cores, we have two choices. We 
can set up distributed calculations, meaning that we have multiple processes, each 
running their own set of calculations. If the calculations are completely independent 
and perfectly divided, this means that if we double the amount of cores, we halve 
the amount of computation time required. The calculations are however dependent 
on each-other, and as a result each process has to wait for the others to finish. After 
that, some communication is required between the processes to be able for all 
processes to proceed again. This communication takes a finite amount of time. 
Often this is done via TCP/IP, but faster specialized technologies such as Infiniband
are available nowadays.

If we use a lot of cores, this communication is the limiting factor, and using even 
more cores, our calculations will actually slow down. Hence, for each process there 
is an optimal amount of cores. If we have enough cores available to use this 
optimum amount, distributed computing is very flexible in scaling. Often, the 
amount of cores used depends on the amount of cores available. 

A typical situation is an engineer that performs the computer simulations at his own 
desktop machine. The amount of cores available is then limited to the amount of 
cores in his own computer. In this scenario, we can exclude a lot of the 
communication time by running in a single process. To do so, we need to run with a 
multi-threaded application, where each thread performs its own calculations. These 
threads all run in the same process, and therefore all have access to the same process 
memory. The amount of communication required is drastically reduced, and the 



remaining communication is very efficient. As the engineer-working-at-his-own-desktop 
scenario is a very common one, this is the one we will focus on in the current presentation. 
With techonologies like HyperThreading, the threads automatically distribute themselves 
over the available cores, so that the developer does not need to worry about that.

6



7

The question remains, how do we distribute the computational load over multiple 
threads? The optimal computational performance is obtained if each of the cores 
performs an equal amount of work, thereby occupying nearly 100% of the available 
computer power, presuming the number of threads is an integer multiple of the 
number of available cores.

Also, we want to minimize the communication and synchronization between the 
different threads. We want therefore to distribute the calculations over the threads in 
such a manner that each of the calculations is as independent as possible. 

The way to obtain this depends on the actual calculations being performed; no 
general rules can be applied. Some processes are iterative for example, and the 
iterations are independent in nature. This would for example be the case if a 
particular simulation is perturbed with respect to all of its inputs to obtain the 
sensitivities. For such processes, each of the iterations is independent, and a natural 
way to divide the load is by performing each iteration in its own thread.

For grid based calculations, such as CFD, it is common to cut the computational 
domain up into smaller pieces such that the connecting area between the domains is 
as small as possible. Each sub-domain is then calculated in its own thread. 

From these examples, it shows that its very likely that the thermo calculations will 
get distributed over the threads as well. This means that each thread will use its own 
thermo and we should be prepared to access the thermodynamics server in a multi-
threaded fashion.



8

The thermodynamic server: what is that? Which software is responsible for proving 
our calculations with thermodynamics?

Typically, flowsheet simulation environments have built-in thermodynamics. 
However, often it is desirable to have thermodynamics from a third party vendor 
that specialized in a particular field, or in-house thermodynamics such as used in the 
big petrochemical or chemical companies. Instead of depending only on built-in 
thermodynamics, most simulation packages these days allow for external 
thermodynamic servers. Support for external thermodynamic servers of many 
vendors is possible via a single open interface, called CAPE-OPEN; this is a set of 
interface definitions particularly designed for integration of process modeling tools. 
Specifically, the interface definitions for unit operation models and thermodynamic 
servers are widely used.

Using CAPE-OPEN, a simulation application only needs to implement its own 
CAPE-OPEN interface support to be able to communicate with multiple thermo 
servers, each of which provides its own thermo support. The communication takes 
place via middle-ware to provide the communication mechanisms. In Windows, this 
is the Common Object Model (COM); CAPE-OPEN also supports the CORBA 
middle-ware, which is in principle platform independent, but requires additional 
software installation to work. The COM implementation of CAPE-OPEN is 
particularly popular at this moment, and the focus of this presentation.



9

COM provides various threading models. Two of them are common, and interesting 
to discuss in this context.

In the Apartment Threaded model, COM objects can only be accessed from the 
thread that created them. It is not allowed to access a COM object from another 
thread. However, multiple apartments can exist, each of which must be single-
threaded.

Then there is the Free Threaded model, in which each COM object can be accessed 
at random from any thread.

Both the COM server, which is the thermodynamic server, and the COM client, 
which is the simulation application that consumes the thermodynamic calculations, 
can choose their own threading model. It would therefore be very intuitive for a 
multi-threaded simulation application to choose for the Free Threaded COM model.



10

This is however in practical scenarios most likely not the best choice. If the 
requirements by the client cannot be imposed on the server without violating the 
server’s advertised threading model, the calls made to the server will not be made 
direct. Windows COM machinery will sit in between to make sure that the server’s 
wishes are being honored. The process in which calls are being translated is called 
marshalling. Marshalling means extra overhead, and on thermodynamic calls that 
can be very efficient and fast, any small overhead may have a big impact. For the 
particular case of marshalling invoked by threading model differences, Windows 
will synchronize all calls to the thermo server onto the thread that created the server. 
In the best case scenario, this is a separate thread that will now be responsible for 
doing ALL the thermo work. In the worst case scenario, this is one of the calculation 
threads, and this thread now has to do its own calculations AND all thermo 
calculations of all other threads. Such marshalling should be avoided.

If the server is Free Threaded, it can deal with both Apartment Threaded and Free 
Threaded access. In this case marshalling is never required. For nearly all 
thermodynamic servers that are available however, the threading model is 
Apartment Threaded. In this case, if the client chooses the Free Threaded model, 
marshalling is invoked; unless we can guarantee that the server is Free Threaded, 
the client should not choose for the Free Threaded model, and use the Apartment 
Threaded model instead.



Of course this has the implication that each of the calculation threads needs to create its own 
copy of the thermodynamic server.

10



11

Now that we are aware that marshalling should be avoided if we want to access 
thermodynamic calculations in an efficient manner, let us look at some other 
reasons for marshalling; all of these should be avoided.

We have seen in the previous slide that the client should choose its threading model 
well. It should create an Apartment Threaded COM object in each calculation 
thread.

Marshalling is also invoked if the data of the client and the data of the server do not 
live in the same process space. This is the case if the server is implemented as an 
out-of-process executable rather than as an in-process DLL. For out-of-process 
information, all data passed between client and server is copied via RPC 
mechanisms. The overhead can be immense.

The client has no control over this, but the server should make sure it is in-process. 
This however brings about an issue with 32-bit implementations vs 64-bit 
implementations. One cannot load a 32-bit DLL into a 64-bit application, or vice 
versa. So a server best implement both a 32-bit version and a 64-bit version, instead 
of going for the single out-of-process implementation.

A third reason for marshalling is if the data of the client is not compatible in format 
with the data of the server. This happens for example if the server is native, and the 
client is managed (i.e. running in the .NET Common Language Runtime). Although 



.NET applications have built-in COM support, the COM data types are not directly accesible
from .NET and will be translated. As nearly all servers and nearly all clients are native, think 
twice before implementing either a server or a client in .NET.

11



12

As with development of all software, some issues will be encountered. This slides 
shows some of these issues that require some consideration. 

First, as all calculation threads need to create their own thermo server object, all of 
these objects must be consistent. What if the user is editing the thermo package in 
the application? The user may very well want to modify the thermo, add or remove 
compounds, select different models, change parameters, etc. These changes need to 
be reflected in the calculation threads. This issue is easily resolved though. CAPE-
OPEN has a mechanism for persistence; the storing and loading of the state of a 
COM object, in this case the thermodynamic server configuration. The persistence 
mechanism is intended to be used for saving the state of the COM server to file, so 
that upon loading the file, the COM server can be used in the state that it was saved 
in. This mechanism can also be used to create copies of COM servers in general: 
save the original, create the copy, restore the copy from the saved version. 
Therefore, this can also be used to make a copy in a different thread. So at the start 
of the calculation, the thermo servers in each thread can be copied from the original 
that the user may have modified.

Next issue: we have seen that to prevent marshalling, we need in-process 
thermodynamic servers. Pretty much all process simulation software around these 
days is still 32-bits. So are the thermodynamic server implementations. As the 



memory requirements of simulation applications change, these applications will start to 
migrate to 64-bit implementations, and can no longer use the 32-bit server implementations. 
The thermodynamic software vendor therefore will have to provide 64-bit support. Currently, 
nearly none of the thermodynamic software vendors do. It is expected that as the 64-bit 
software becomes more popular, the thermo software vendors will have to keep up with the 
developments and provide 64-bit support for their thermodynamic servers.

During the testing and evaluation of the multi-threading support in COCO, it was found that 
not all thermodynamics servers that are currently available, are thread safe. The servers are 
generally Apartment Threaded, and it is apparently assumed by the thermo vendors that this 
means that their software can only be accessed from a single thread. This is not the case, as 
multiple single-threaded apartments may exist, and according to the scenario sketched here, 
will exist. As a result of the server not being thread safe, crashes may occur, or worse, 
thermodynamic calculations may result in incorrect results. Again it is expected that these 
issues will be resolved by the thermodynamic software vendors in the near future, as multi-
threaded thermodynamic consuming applications become more popular.

Finally, the current CAPE-OPEN implementations are mostly based on COM. Why? Because 
it works. COM is one of the few middle-ware implementations in which marshalling-free 
interaction of the server and the client can be accomplished; CORBA cannot do this; all 
CORBA servers are out-of-process. It is for this reason that even Microsoft uses COM as the 
basis of many of its current products, like office, visual studio, internet explorer, … If COM 
will be fading out, it is in my view because it will be replaced by other middleware that can 
accomplish marshalling-free interoperability. In this case, CAPE-OPEN itself has to adapt to 
this new standard. Another disadvantage of COM is of course that it is bound to Windows 
platforms. It would be nicer to have generic middleware that is not. Perhaps CAPE-OPEN 
should provide its own middle-ware in the future, currently is it not. As long as we are willing 
to develop only for Windows, we can at this point safely use COM. Even if COM fades out, 
all we need to do is replace the COM middleware layer and our picture will be complete 
again.

12



13

To summarize:

In the scope of engineers having access only to their own Desktop computer 
hardware, multi-threading is a good way to distribute the computational load over 
multiple cores; all threads share the same memory, making for cheap 
communication.

CAPE-OPEN is a good way to access thermodynamics of multiple vendors and only 
have to implement a single interface set; the CAPE-OPEN standards are available 
from the CAPE-OPEN Laboratories Network, CO-LaN, at www.colan.org

COM is currently the middle-ware to pick. The reason for this choice: marshalling-
free and thus very efficient implementations.

To keep marshalling free, some more choices need to be made: the client should 
choose the Apartment Threaded model and create a thermodynamic server COM 
object in each calculation thread.

The server should allow avoiding marshalling, by providing an in-process thread 
safe implementation. A 64-bit implementation should be provided to support 64-bit 



applications.

Problems with existing applications are expected to be resolved by their respective software 
vendors as time passes and multi-threaded and 64-bit thermo access becomes more common.

Perhaps an alternative middle-ware would come in handy; one that allows platform 
independent marshalling-free operation. A generic solution does not appear to be avaialble. 
Perhaps CAPE-OPEN should come up with one.

13



14

COFE is the flowsheet simulation environment of the COCO package; COCO is 
available free of charge, and includes a flowsheeter, thermodynamics, unit 
operations, reaction packages and more, all available as separate modules that 
communicate via the CAPE-OPEN standards. Since version 2.0, COFE performs its 
main flowsheet calculatations in a background thread, so that multiple flowsheets
can be solved at the same time, and the user can continue to use the main 
application while solving flowsheets. Although this is not geared specifically to 
solving the flowsheet quicker by employing multiple cores, all the concepts that 
have been discussed are applied in this scenario, and they are work. During this 
implementation, many thermodynamic servers have been tested. I had already 
indicated at previous slides that some implementation issues where found. These 
were reported back to the vendors, and most vendors have already provided either 
fixes or workaround for now, and fixes later.

COFE allows for parametric studies, in which the influence of particular inputs on 
the solution of the flowsheet is tested. This requires solving several individual 
flowsheets. These are solved at different cores in different threads; here the full 
potential of multiple cores is realized. 

Another application that uses multi-threaded calculations with CAPE-OPEN 
thermodynamics is COMSOL Multiphysics. Here too, the concepts have been 



proven to work. This application also provides a 64-bit implementation. 32-bit 
thermodynamic servers are available, but via a detour and out-of-process. The impact of out-
of-process marshalling is found to be severe.

Both of the applications mentioned here are available to thermodynamics software developers 
to test their implementations; COCO/COFE is available free-of-charge.

14



15

COCO is freely available for download from cocosimulator.org. Feel free to 
download a copy; many have done so already, from all over the world (next slide) 

At the COCO simulator site you can also find the CAPE-OPEN compliancy testing 
programme; if you are a CAPE-OPEN developer, do check this site out.

The CAPE-OPEN standards are open; this means that they are available free-of-
charge to everybody, and everybody can make their own client or server 
implementation. The standards are provided and maintained by the CAPE-OPEN 
Laboratories Network, and available from http://www.colan.org/

CAPE-OPEN developers may want to check out the CAPE-OPEN forum.

AmsterCHEM provides chemical engineering software consultancy, and specialized 
in CAPE-OPEN implementations. For more information, go to 
www.amsterchem.com.



16

Finally, Jasper van Baten would like to thank all companies that generously 
provided software and licenses to AmsterCHEM for CAPE-OPEN development and 
testing.


